| Therma | | | | | 40 | | | | | | | |---|--|---------------------------------------|-----------------------|------------------------|-------------------|--------------------------------------|---------------------------|------------------------------|-----------------------------|----------|---------| | | | | | | 13 | Date | | | . - - | Blk | | | lmagine w | e could | see the p | oarticles i | in air. Be | low are | two diag | grams o | f what | the air | might | look | | ike: | (0) | 000 | | | (b) | ·O | 0., | n. | | | | | | 9 | 2000 | | | | | | , | | | | | | • | 000 | | | | "Q, "O | ' , O., | | | | | | 1. Does the | air in dia | agrams (a |) and (b) h | nave the s | ame.tem | perature? | | | | | | | 2. How can | you tell? | > | | an control | * 4. 9 | | | | | | | | 3. In which | diagram | do you th | nink the te | mperature | of the a | ir is great | er? | | | | | | | | | | | | | 1 2 | ¥2 | | | 41 | | Below are
energy (e) | two mo
of each | re diagra
particle | ms of air
(the amo | . Imagin
ount is gi | ne this ti
ven | me that | we hav | e been | able to | meas | ure u | | -17.7 | (c) | | ●=7 | | | (ci) | 0
e=5
7 (| ()
e=6 | e = 7 | | | | | | () () () () () () | | | | C | |) | \bigcirc | e = 5 | | | | | e=8 | | 9 | | e = ; | 7 e= | В | = 4 | | | | | | | 0 - 1 | _ | | | | iaaram | | | | | 4 Evolain | how voii | could calc | fulate the t | thermal e | eneray o | of the air in | n each d | iayi ai ii. | | | | | 4. Explain | how you | could cald | ulate the t | thermal e | energy o | of the air in | n each d | iagi ai ii. | | | | | 1971 T | | | | | | | | | | agrams (| 'c) an | | 5. Use the | method | you descr | | | | | | | | agrams (| (c) and | | 5. Use the (d). Show | method | you descr | | | | thermal | | of the a | | agrams (| (c) and | | 5. Use the (d). Show | method | you descr | | | | thermal | energy | of the a | | agrams (| (c) and | | 5. Use the (d). Show | method | you descr | | e to calcul | late the | thermal | energ y
gram (d | of the a | | agrams (| (c) and | | 5. Use the (d). Show | method | you descr | | e to calcul | late the | thermal
<u>Dia</u> | energ y
gram (d | of the a | | agrams (| (c) and | | 5. Use the (d). Show | method
your w
gram (c) | you descr
ork . | ibed above | e to calcul | late the | thermal
<u>Dia</u> | energy
gram (d | of the a | air in dia | agrams (| (c) an | | 5. Use the (d). Show | method
your w
gram (c) | you descr
ork . | ibed above | e to calcul | late the | thermal
<u>Dia</u> | energy
gram (d | of the a | air in dia | agrams (| (c) an | | 5. Use the (d). Show | method
your w
gram (c) | you descr
ork . | ibed above | e to calcul | late the | thermal
<u>Dia</u> | energy
gram (d | of the a | air in dia | agrams (| (c) and | | 5. Use the (d). Show | method
your w
gram (c) | you descr
ork . | ibed above | e to calcul | late the | thermal
<u>Dia</u> | energy
gram (d | of the a | air in dia | agrams (| (c) an | | 5. Use the (d). Show Dia 6. Explain | method
your w
gram (c)
how you | you descrork. | ibed above | to calcul | late the | thermal
<u>Dia</u>
he air in d | energ y
gram (d | of the a | air in dia | | | | 5. Use the (d). Show Dia6. Explain7 Use the | method your w gram (c) how you | you descrork. could cale | ibed above | to calcul | late the | Dia
Dia
he air in d | energy gram (d | of the a (c) and f the air | air in dia | | | | 5. Use the (d). Show Dia 6. Explain 7 Use the Show you | method your w gram (c) how you | you descr
ork.
could cale | ibed above | to calcul | late the | Dia
Dia
he air in d | energ y
gram (d | of the a (c) and f the air | air in dia | | | | 5. Use the (d). Show Dia 6. Explain 7 Use the Show you | method your wagram (c) how you method work | you descr
ork.
could cale | ibed above | to calcul | late the | Dia
Dia
he air in d | energy gram (d | of the a (c) and f the air | air in dia | | | | 5. Use the (d). Show Dia 6. Explain 7 Use the Show you | method your wagram (c) how you method work | you descr
ork.
could cale | ibed above | to calcul | late the | Dia
Dia
he air in d | energy gram (d | of the a (c) and f the air | air in dia | | | | 5. Use the (d). Show Dia 6. Explain 7 Use the Show you | method your wagram (c) how you e method ir work, agram (c) | you descr
ork.
could cale | ibed above | to calcul | late the | Dia
Dia
he air in d | energy gram (d | of the a (c) and f the air | air in dia | | | | 5. Use the (d). Show Dia 6. Explain 7 Use the Show you | method your w gram (c) how you e method r work. egram (c) | you descrork. could cale d you descr | ibed above | temperat | late the | Dia
Dia
he air in d | energy gram (d | of the a (c) and f the air | air in dia | | | | 5. Use the (d). Show Dia 6. Explain 7 Use the Show you | method your w gram (c) how you e method r work, agram (c) | you descrork. could cale d you descr | ibed above | temperat | late the | thermal Dia he air in d e temper | energy gram (d | of the a | air in dia | | |