Name:_		
Blk:	_Date:	

Science Notes: STATES OF MATTER

<u> </u>	s anything that I	nas a mas	s and a vol	lume
→ It is measured in		of matter	in an objec	et
			n object ta	kes up
THE STATES OF MATTER:		100 000 000		
There are	_ Categories for	r Matter		
1			al a	
have ahave ahave a	volume	•	• 9,5 4 1	5-
2				
have a have a Take the shape of its _	volume	, v.		
Ex:		*		
have a Take the volume of its				
Take the shape of its _				,
Ex:		2.1		
1.		*6	p.	
What is	? Read pg :	258 and a	nswer this	question.

Name:		
Blk:	_Date:	

Science Notes: Changes of State

	·		
Particles with mor	e energy move faster than particles with less energy.		
Therefore:			
lf you and	to a substance, the particles move and start to spread further and further apart =		
The three possible heat are:	e changes of state that can occur with the addition of energy or 1 solid → liquid 2 liquid → gas 3 solid → gas		
If you	from a substance, the particles move and start to get closer and closer together =		
The three possibl	e changes of state that can occur with the removal of energy or		
heat are:	1 liquid → solid 2 gas → liquid 3 gas → solid		

Complete the diagram on the next page using the above terms in the proper spaces

Name:_		
Blk:	_Date:	

Science 9 Notes on: The PMM and KMT

The Particle Model of Matter: Describes the_____ of matter All matter is made of small_____ There are varying ______ between the particles. Gases have _____ space than liquids. Liquids have ____space than solids. Particles are always _____ Particles are ______ to each other. The strength of attraction depends on the _____ of particle. The Kinetic Molecular Theory: (Recall from science 8 that Kinetic energy is the energy of objects in Describes what happens to matter when the kinetic energy of particles Matter is made of small ______. There are empty ______ between the particles. Particles are constantly _____ Solid particles are packed together and cannot move freely. They can only _____. Liquid particles are farther apart and can _____ _____ each other. Gas particles are far apart and move around Adding _____ makes particles move.