
Name:			
Blk:	Date:_		

Chemistry 11 Water as a Solvent

In Junior Science you learned about matter:	

At the start of this semester we learned that matter can be classified into: _______.

We spend a lot of time in junior sciences focusing on	We	
investigate elements in their atomic structure. Yesterday	you learned that compounds can be classified	
as either	And we mentioned that water is so	
important because it is	·	
Today we are going to focus on	A mixture is when two or more pure	
substances combine. A mixture can be classified as eithe	ror	
In science of	ten the name tells us the exact qualities of the	
substance. For instance <i>HOMO</i> in means "		
Homogenous substance appears to be the same through	out whereas heterogeneous substances look	
different. An example of a homogeneous mixture is a	(example: the result of	
combining) an example of a	heterogeneous mixture is a	
(example: the result of combining _). DEMO OF THIS	
When making mixtures there are two components to kee	ep in mind:	
The Solute (the stuff that is)	
The Solvent (the stuff that is)	

Yesterday we looked at different solvents (in question #17) and you may have noticed that the majority
of them were classified as being "". And that is because a polar solvent (which
possess either the H-bond or the dipole-dipole bond) can dissolve either polar or non-polar solutes.
In a salt water solution, is the solvent and is the
solute. In the iodine and water suspension, is the solvent and
is the solute.
When water and salt are combined not only does the water dissolve the salt (), but it
also (or IONIZES) the salt into its component ions:
When this occurs the solution that is formed can conduct an
We can show this in an equation:
Here the separation of charges enables an electric current to flow through the solution and light the bulb.
When water and iodine combine the water only somewhat dissolves the iodine.
Here the lack of ions (no charges) does not enable an electric current to flow and the light bulb does not glow.
1. What do you think will happen when we combine water and sugar?
2. Because of the result what can we conclude about sugar?
Remember the process of solvation? "Like dissolves Like"?
Water is POLAR and will dissolve and dissociate a POLAR (or IONIC) solute such as <u>salt</u> .
Water is POLAR and will (somewhat) dissolve but not dissociate a NON-POLAR (true covalent) solute such as <u>lodine</u> .
Now watch the video: "Crash Course Chemistry Water and Solutions for Dirty Laundry #7".
Ex: 28 and 29 pg 210