	The second second	
	116	
	110	a second
No. of Lot		Carationia C

Name:_		JOLL
Blk:	_Date:	

Chemistry 11 Assignment #3

PART I

DISSOCIATION AND IONIZATION

1. Write an equation to show the dissociation/ionization of each of the following:

a. KBr (s) KBr -> K+ (aq) + Br (aq)

b. HCI (g) HCI -> H+ (aq) + C1 (aq)

c. Na₂SO₄ (s) Na₃SO₄ > 2Na + SO₄

d. Ca(OH)2 (s) (G(OH)) -> (a (aq) +20H (aq)

e. AICI₃ (s) $AICI₃ \rightarrow AI³⁺_(Gg) + 3CI_(Gg)$

f. $(NH_4)_2S$ (s) $(NH_4)_2S \rightarrow 2NH_4^{\dagger} + S^{\dagger}$

g. $H_2SO_4(g)$ $H_2SO_4(g)$ $H_2SO_4(g)$ $H_2SO_4(g)$ $H_2SO_4(g)$

2. The most commonly used solvent in chemistry is water. Suggest some reasons why water is such a common solvent

H is abundant, cheap non havnoul reacts in puth polar + non puter

solutes

19

PART II A. CONDUCTIVITY OF AQUEOUS SOLUTIONS

The **Ionization** of Water:

$$H_2O(I)$$
 -----> $H^+(aq) + OH^-(aq)$

The presence of IONS in solution can result in either a very conductive, a mildly conductive, a slightly conductive or an almost negligible conductivity. Examine the table below:

solution tested	result
distilled H ₂ O	slightly conductive
pure alcohol C ₂ H ₅ OH	negligible conductivity
NaSCN in H ₂ O	very conductive
HCI in H ₂ O	very conductive
NaOH in H ₂ O	very conductive
C ₁₂ H ₂₂ O ₁₁ (sugar) in H ₂ O	slightly conductive
Na ₃ PO ₄ in H ₂ O	very conductive
pure glycerine C ₃ H ₅ (OH) ₃	negligible conductivity
KOH in H ₂ O	very conductive
pure acetone CH ₃ COCH ₃	negligible conductivity

1. What is true about the chemical formula of non-conductive compounds (except H2O)

They contain C, H and D : are molecular 2. HCl is an example of what type of a compound?

It is an acid

- 3. KOH and NaOH are examples of what type of compound?
- 4. How would you classify the compounds NaŚCN and Na₃PO₄?