Assignment #2 POLAR AND NONPOLAR SOLVENTS ## EXERCISE: Classify each of the above solvents as either polar or nonpolar. | Solvent | Polar or nonpolar? | Solvent | Polar or nonpolar? | Solvent | Polar or nonpolar? | |----------|--------------------|--------------|--------------------|----------------------|--------------------| | water | POLAR | ethoxyethane | POLAR | carbon tetrachloride | NON-POUR | | methanol | POUAR | acetone | POLAR | heptane | NON-POLAT | | ethanol | POLAIR | acetic acid | POLYNE | liquid ammonia | POLIAR. | | benzene | MON- | chloroform | POLIAR | | | ## EXERCISE: | EXERCISE: | |---| | 9. Which of the following are expected to be polar and which are expected to be nonpolar? (a) H-H (b) H-O (c) O-Cl (d) Cl-Cl | | 10. Which of the following molecules will be polar and which will be nonpolar? | | (a) CI (b) CI (c) H 20 (d) H—Mg—H B—CI (d) H—C—CI | | Device of Borry III I | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | potere + parke poor | | 14. Which of the following substances would you expect to involve hydrogen bonds? (a) CH ₄ (c) H ₂ O (e) CH ₃ -NH ₂ (g) CH ₃ -CH ₂ -OH (b) HCl (d) H ₂ S (f) CH ₃ -SH (h) HF | | Suggest a reason why liquid propane has a very low viscosity, whereas liquid glycerine has a
very high viscosity. | | propane = CH ₃ -CH ₂ -CH ₃ glycerine = CH ₂ -CH-CH ₂ I I I OH OH OH | | 18. Bromine, Br ₂ , is highly soluble in hexane (C ₆ H ₁₄ = CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃) but only slightly soluble in water. Why might this situation occur? | | 19. What advantage might a molecule have as a solvent if it had a long nonpolar carbon chain ending with an ionic group, such as CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ COO Na ⁺ ? disselve look non-polar + polar + polar | | 20. Why can't a nonpolar solvent dissolve an ionic compound? Ionic local too Shory for Lendan - For a | | 21. Why is the polar solvent water able to dissolve small amounts of nonpolar liquid pentane, C ₅ H ₁₂ (I)? 22. You have water, methanol (CH ₃ OH) and ethanol (CH ₃ CH ₂ OH) available to act as solvents. Which of these three solvents do you expect to dissolve the greatest amount of each of the following? (a) KCI (b) CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ Br (c) octane (CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃) | | the a color chellout a little by | | SUMMARY EXERCISES: | | 23. Classify each of the following with respect to the most important type(s) of bonding or force(s) existing between the particles. | | (a) 2 molecules of O_2 in $O_2(s) \rightarrow LF$ (g) 2 molecules of CH_3F in $CH_3F(l) \rightarrow H \rightarrow LF$ | | (b) 2 atoms of Xe in Xe(s) (h) 2 molecules of CCl ₄ (symmetric) in CCl ₄ (l) (b) 2 molecules of CCl ₄ (symmetric) in CCl ₄ (l) | | (c) 2 molecules of BrCl in BrCl(l) → divole (i) 2 molecules of NOCl in NOCl(s) → dipole (d) 2 molecules of CH₃CH₂NH₂ in CH₃CH₂NH₂(l) | | (e) an atom of C and an atom of Cl in CCl₄ → ◆ ◆ ◆ ◆ ♦ (k) 2 molecules of NH2OH in NH2OH(l) → H • ► ► ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ | | (f) 2 molecules of BF ₃ (symmetric) in BF ₃ (l) -> LF (l) atoms of He and Kr -> LF | | 24. Which should melt at a higher temperature? (a) He or Xe (b) Fa or Bra (c) CHAOL CHAE | | (b) HBr or Kr (e) CH ₄ or CCl ₄ (h) HI or HCl | | (c) CH ₃ -CH ₃ or HO-CH ₂ CH ₂ -OH (f) H ₂ O or H ₂ Te | | 25. Octane, CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ , should be a good solvent for which of the following? (a) ₂ (s) (b) NaCl(s) (c) H ₂ O(l) (d) C ₁₀ H ₈ (s) (symmetric) |