SOLUBILITY STUDY GUIDE- Multiple Choice Section

Multiple Choice Section: This study guide is a compilation of questions from provincial exams since 2000. I urge you to become intimately familiar with question types. You will notice that questions from one year to another are very similar in their composition. Identification of question types will allow you to be more efficient in answering these questions on the provincial examination. My recommendations for using this study guide are as follows:

- DO ALL THE QUESTIONS in this booklet. These are actual Provincial Exam questions! Your own provincial exam and unit test will include questions similar to the ones in this booklet!
- RESIST THE URGE TO LOOK AT THE ANSWER KEY until you have given all the questions in the section your best effort. Don't do one question, then look at the key, then do another and look at the key, and so on. Each time you look at one answer in the study guide, your eye will notice other answers around them, and this will reduce the effectiveness of those questions in helping you to learn.
- LEARN FROM YOUR MISTAKES! If you get a question wrong, figure out why! If you are having difficulty, talk to your study partner, or maybe phone someone in your Peer Tutoring group. Get together with group members or other students from class and work on these questions together. Explain how you got your answers to tough questions to others. In explaining yourself to someone else, you will learn the material better yourself (try it!) Ask your teacher to explain the questions to you during tutorial or after school. Your goal should be to get 100% on any Chemistry 12 multiple choice test- learning from your mistakes in this booklet will really help you in your efforts to meet this goal!
- This is REALLY CRUCIAL: DO NOT mark the answer anywhere on the questions themselves. For example, do not circle any of options A B C or D-instead use a different sheet of paper to place your answers on. By avoiding this urge, you can re-use this study guide effectively again, when preparing for your final exam. In the box to the left, put an asterisk or small note to yourself to indicate that you got the question wrong and need to come back to it. If you got the question correct initially, a check mark might be assurance that you understand this type of question and therefore can concentrate on other questions that present a challenge to you.
- Check Off the STATUS box on the PRESCRIBED LEARNING OUTCOMES sheet. I have tried to organize the questions in the identical sequence to which they appear on your Acid Base Prescribed Learning Outcome sheet. By doing this, you can be confident that you know everything you need to know for both the UNIT EXAM and PROVINCIAL EXAM!

TABLE OF CONTENTS:

QU	CONCEPT OF SOLUBILITY 1 SOLUBILITY AND PRECIPITATION 5 QUANTITATIVE ASPECTS 15 ANSWERS 21				
			COI	NCEPT OF SOLUBILITY	
1.	G1	Which o	0	dissolve in water to produce a molecular solution?	
		A. CaCl ₂		C. CH_3OH D. $Sr(OH)_2$	
2.	G1			would form an ionic solution when dissolved in water?	
		A. I ₂	B. CH ₃ OH	()/2 12 22 11	
3.	G1			conduct electricity because they contain	
				ons and anions. C. molecules and anions. D. molecules and cations.	
4.	G1			which of the following produces an ionic solution?	
		A. O_2	B. CH ₄ C.	$CaCl_2$ D. $C_{12}H_{22}O_{11}$	
5.	G1	XX/1		which of the fallowing formers a male culous solution ?	
٥.	UI	w nen ai	ssoivea in water, v	vhich of the following forms a molecular solution?	
٥.	U1	A. HCl	B. NaNO ₃	(s) C. $CH_3OH_{(l)}$ D. $K_2SO_{4(s)}$	
6.	G1	A. HCl	B. NaNO ₃	(s) C. $CH_3OH_{(l)}$ D. $K_2SO_{4(s)}$	
		A. HCl (Which of	B. NaNO ₃ f the following disso		
		A. HCl (Which of A. O ₂	g) B. NaNO ₃ f the following dissorbidge B. SiO ₂ C.	$C. CH_3OH_{(l)}$ D. $K_2SO_{4(s)}$ D. $C. CH_3OH_{(l)}$ D. $C. CH_3OH_$	
6. 7.	G1	A. HCl (Which of A. O ₂	g) B. NaNO ₃ f the following disso B. SiO ₂ C f the following pro	olves in water to form an ionic solution? KMnO ₄ D. C ₁₂ H ₂₂ O ₁₁	
6.	G1	A. HCl ₀ Which of A. O ₂ Which o A. RbCl ₀	g) B. NaNO ₃ f the following disso B. SiO ₂ C f the following pro	C. CH ₃ OH _(l) D. K ₂ SO _{4(s)} colves in water to form an ionic solution? KMnO ₄ D. C ₁₂ H ₂₂ O ₁₁ coluces a molecular solution when dissolved in water? C. NH ₄ SCN D. NaCH ₃ COO	
6. 7.	G1	A. HCl ₀ Which of A. O ₂ Which o A. RbCl ₀	B. NaNO ₃ f the following dissorbing B. SiO ₂ C. f the following pro	C. CH ₃ OH _(l) D. K ₂ SO _{4(s)} colves in water to form an ionic solution? KMnO ₄ D. C ₁₂ H ₂₂ O ₁₁ coluces a molecular solution when dissolved in water? C. NH ₄ SCN D. NaCH ₃ COO	
6. 7.	G1	A. HCl ₀ Which of A. O ₂ Which o A. RbCl ₀	B. NaNO ₃ f the following disso B. SiO ₂ C f the following pro D. B. CH ₃ OH the following solut	C. CH ₃ OH _(l) D. K ₂ SO _{4(s)} colves in water to form an ionic solution? KMnO ₄ D. C ₁₂ H ₂₂ O ₁₁ coluces a molecular solution when dissolved in water? C. NH ₄ SCN D. NaCH ₃ COO des: Which of the solutes above form only molecular aqueous	
6. 7.	G1	A. HCl (Which of A. O ₂ Which of A. RbCl(Consider	B. NaNO ₃ If the following dissorbing B. SiO ₂ C. If the following property B. CH ₃ OH The following solut K ₃ PO ₄	C. CH ₃ OH _(I) D. K ₂ SO _{4(s)} colves in water to form an ionic solution? KMnO ₄ D. C ₁₂ H ₂₂ O ₁₁ coluces a molecular solution when dissolved in water? C. NH ₄ SCN D. NaCH ₃ COO ces: Which of the solutes above form only molecular aqueous solutions?	
6. 7.	G1	A. HCl (Which of A. O ₂ Which of A. RbCl(Consider	B. NaNO ₃ f the following disso B. SiO ₂ C. f the following pro D. B. CH ₃ OH the following solut K ₃ PO ₄	C. CH ₃ OH _(l) D. K ₂ SO _{4(s)} colves in water to form an ionic solution? KMnO ₄ D. C ₁₂ H ₂₂ O ₁₁ coluces a molecular solution when dissolved in water? C. NH ₄ SCN D. NaCH ₃ COO ces: Which of the solutes above form only molecular aqueous solutions? A. I and II	
6. 7.	G1	A. HCl (Which of A. O ₂ Which of A. RbCl(Consider	B. NaNO ₃ f the following dissorbance B. SiO ₂ C. f the following pro D. B. CH ₃ OH the following solut K ₃ PO ₄ C ₂ H ₅ OH	C. CH ₃ OH _(I) D. K ₂ SO _{4(s)} colves in water to form an ionic solution? KMnO ₄ D. C ₁₂ H ₂₂ O ₁₁ coluces a molecular solution when dissolved in water? C. NH ₄ SCN D. NaCH ₃ COO des: Which of the solutes above form only molecular aqueous solutions? A. I and II B. II and III	
6. 7.	G1	A. HCl (Which of A. O ₂ Which of A. RbCl(Consider	B. NaNO ₃ f the following disso B. SiO ₂ C. f the following pro D. B. CH ₃ OH the following solut K ₃ PO ₄	C. CH ₃ OH _(l) D. K ₂ SO _{4(s)} colves in water to form an ionic solution? KMnO ₄ D. C ₁₂ H ₂₂ O ₁₁ coluces a molecular solution when dissolved in water? C. NH ₄ SCN D. NaCH ₃ COO ces: Which of the solutes above form only molecular aqueous solutions? A. I and II	

IV.

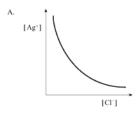
KCH₃COO

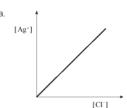
9.	G3	Which of the following does <u>not</u> define solubility?
		A. the concentration of solute in a saturated solution
		B. the moles of solute dissolved in a given volume of solution
		C. the maximum mass of solute that can dissolve in a given volume of solution
		D. the minimum moles of solute needed to produce one litre of a saturated solution
10.	G3	To determine the solubility of a solute in water, a solution must be prepared that is
		A. saturated. B. unsaturated. C. concentrated. D. supersaturated.
11.	G3	When Ca (OH) ₂ attains solubility equilibrium, the
		A. solution is saturated. B. pH will be less than 7.
		C. Trial K_{sp} is less than the K_{sp} . D. concentrations of the ions are equal.
12.	G4	Which of the following units is commonly used to describe solubility?
		A. mL/s B. g/°C C. mol/L D. °C/mol
13.	G4	Which of the following units can be used to represent solubility?
		A. g B. mol C. mol/L D. mL/s
14.	G4	Which of the following units could be used to describe solubility?
		A. g/s
		B. g/L
		C. M/L
		D. mol/s
15.	G5	A saturated solution of NiCO ₃ was evaporated to dryness. A 250.0 mL sample was found to
		contain 1.1×10^{-2} g NiCO ₃ . The molar mass of NiCO 3 is 118.7 g mol. The molar solubility
		of NiCO ₃ is:
		A. 9.3×10^{-5} M B. 3.7×10^{-4} M C. 4.4×10^{-2} M D. 1.4×10^{-7} M
16.	G5	A student evaporated 200.0mL of a saturated solution of SrCrO ₄ to dryness. The residue
		contained 1.2×10 ⁻³ mol SrCrO ₄ . The solubility of SrCrO ₄ is:
		A. 1.4×10^{-6} M B. 3.6×10^{-5} M C. 2.4×10^{-4} M D. 6.0×10^{-3} M
17.	G6	In a solubility equilibrium, the
		A. rate of dissolving equals the rate of crystallization.
		B. neither dissolving nor crystallization are occurring.
		C. concentration of solute and solvent are always equal.
		D. mass of dissolved solute is greater than the mass of the solution.
18.	G6	In a saturated solution of KNO ₃ , the rate of crystallization is
		A. equal to zero. B. equal to the rate of dissolving.
		C. less than the rate of dissolving. D. greater than the rate of dissolving.
19.	G6	In a saturated solution, the rate of dissolving is
		A. equal to zero. B. equal to the rate of crystallization.
		C. less than the rate of crystallization. D. greater than the rate of crystallization.
20.	G6	
		Which of the following represents the equilibrium in a saturated solution of $Cr_2(SO_4)_3$?
		A. $\operatorname{Cr}_{2}(\operatorname{SO}_{4})_{3(s)} \rightleftarrows \operatorname{Cr}^{2+}_{(aq)} + \operatorname{SO}_{4}^{3-}_{(aq)}$
		B. $\operatorname{Cr}_{2}(\operatorname{SO}_{4})_{3(s)} \rightleftarrows \operatorname{Cr}^{3+}_{(aq)} + \operatorname{SO}_{4}^{2-}_{(aq)}$
		C. $Cr_2(SO_4)_{3(s)} \rightleftharpoons 2Cr_{(aq)}^{2+} + 3SO_4^{3-}_{(aq)}$
		D. $Cr_2(SO_4)_{3(s)} \rightleftharpoons 2Cr_{(aq)}^{3+} + 3SO_4^{2-}_{(aq)}$

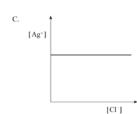
21. G6 The equation representing the equilibrium in a saturated solution of CaSO₄ is

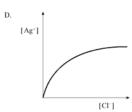
A.
$$CaSO_{4(s)} \rightleftharpoons Ca^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$$

B.
$$CaSO_{4(s)} \rightleftharpoons Ca^{2+}_{(aq)} + S^{2-}_{(aq)} + 4O^{2-}_{(aq)}$$


$$\text{C.} \quad \text{CaSO}_{4(s)} + \text{H}_2\text{O}_{(\ell)} \;\; \rightleftarrows \;\; \text{CaO}_{(aq)} + \text{H}_2\text{SO}_{4(aq)}$$


D.
$$CaSO_{4(s)} + 2H_2O_{(\ell)} \rightleftharpoons Ca(OH)_{2(aq)} + H_2SO_{4(aq)}$$


22. G6 Consider the following equation:


$$AgCl_{(s)} \rightleftharpoons Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$$

Which of the following graphs represents the relationship between [Ag⁺] and [Cl⁻] in this system at a constant temperature?

23. G7 The equation that represents the equilibrium in a saturated solution of $Fe_2(SO_4)_3$ is

A.
$$Fe_2(SO_4)_{3(s)} \rightleftharpoons 3Fe^{2+}_{(aq)} + 2SO_4^{3-}_{(aq)}$$

B.
$$Fe_2(SO_4)_{3(s)} \rightleftharpoons 2Fe_{(aq)}^{2+} + 3SO_4^{3-}_{(aq)}$$

C.
$$Fe_2(SO_4)_{3(s)} \rightleftharpoons 3Fe_{(aq)}^{3+} + 2SO_4^{2-}_{(aq)}$$

D.
$$Fe_2(SO_4)_{3(s)} \rightleftharpoons 2Fe_{(aq)}^{3+} + 3SO_4_{(aq)}^{2-}$$

24. G8 The ion concentrations in $0.25 \,\mathrm{M} \,\mathrm{Al}_2(\mathrm{SO}_4)_3$ are

	[Al ³⁺]	$\left[\mathrm{SO_4}^{2-} \right]$
A.	0.25 M	0.25 M
B.	0.50 M	0.75 M
C.	0.75 M	0.50 M
D.	0.10 M	0.15 M

25. G8 Which of the following solutions would have $[Fe^{3+}] = 0.020 \text{ M}$?

- A. $0.40 \text{ L of } 0.050 \text{ M Fe}(\text{NO}_3)_3$
- B. $0.80 \,\text{L}$ of $0.020 \,\text{M}$ Fe₂(SO₄)₃
- C. $0.50 \,\text{L}$ of $0.040 \,\text{M}$ FeC₆H₅O₇
- D. $0.50 \,\mathrm{L}$ of $0.010 \,\mathrm{M}$ Fe₂(C₂O₄)₃

26. G8 In a 200 mL sample of 0.030M Na_3PO_4 , the $[Na^+]$ is:

A. 0.006 M B. 0.010 M C. 0.018 M D. 0.090 M

27. G8 In an experiment, 0.500 mol of Fe(NO₃)₃ is dissolved in water to produce a 2.00 L solution.

The $[NO_3]$ in this solution is

A. 0.250 M B. 0.500 M C. 0.750 M D. 1.50 M

28. G8 What is the [Co²⁺] and [Cl⁻] when 0.35 mol of CoCl₂ is dissolved in enough water to make 100.0 mL of solution?

- A. $\left[\text{Co}^{2+}\right] = 3.5 \text{ M} \text{ and } \left[\text{C1}^{-}\right] = 3.5 \text{ M}$
- B. $\left[\text{Co}^{2+}\right] = 3.5 \text{ M} \text{ and } \left[\text{C1}^{-}\right] = 7.0 \text{ M}$
- C. $\left[\text{Co}^{2+}\right] = 0.35 \text{ M} \text{ and } \left[\text{C1}^{-}\right] = 0.35 \text{ M}$
- D. $\left[\text{Co}^{2+}\right] = 0.35 \text{ M} \text{ and } \left[\text{C1}^{-}\right] = 0.70 \text{ M}$

When 250 mL of 0.36 M Sr(OH)₂ are added to 750 mL of water, the resulting ion concentrations are

- A. $\left[\text{Sr}^{2+} \right] = 0.12 \,\text{M} \text{ and } \left[\text{OH}^{-} \right] = 0.12 \,\text{M}$
- B. $[Sr^{2+}] = 0.12 \text{ M} \text{ and } [OH^{-}] = 0.24 \text{ M}$
- C. $[Sr^{2+}] = 0.090 \text{ M} \text{ and } [OH^{-}] = 0.090 \text{ M}$
- D. $[Sr^{2+}] = 0.090 \text{ M} \text{ and } [OH^{-}] = 0.180 \text{ M}$

30. G8 A 200.0 mL solution contains 0.050 mol of Ba(NO_3)₂. The [NO_3] is:

A. 0.050 M

B. 0.10 M

C. 0.25 M

D. 0.50 M

31. G8 In 1.5 M $(NH_4)_2 SO_4$, the ion concentrations are

- A. $[NH_4^+] = 1.5 \text{ M} \text{ and } [SO_4^{2-}] = 1.5 \text{ M}$
- B. $[NH_4^+] = 1.5 \text{ M} \text{ and } [SO_4^{2-}] = 3.0 \text{ M}$
- C. $[NH_4^+] = 3.0 \text{ M} \text{ and } [SO_4^{2-}] = 1.5 \text{ M}$
- D. $[NH_4^+] = 3.0 \text{ M} \text{ and } [SO_4^{2-}] = 3.0 \text{ M}$

32. G8 If the solubility of Pb(OH)₂ is 0.155 g/L, then the concentration of each ion in a saturated solution of a Pb(OH)₂ is

- A. $[Pb^{2+}] = 0.155 \text{ g/L} \text{ and } [OH^-] = 0.155 \text{ g/L}$
- B. $[Pb^{2+}] = 0.052 \text{ g/L} \text{ and } [OH^{-}] = 0.103 \text{ g/L}$
- C. $[Pb^{2+}] = 6.43 \times 10^{-4} \text{ M} \text{ and } [OH^{-}] = 1.29 \times 10^{-3} \text{ M}$
- D. $[Pb^{2+}] = 6.43 \times 10^{-4} \text{ M} \text{ and } [OH^{-}] = 6.43 \times 10^{-4} \text{ M}$

A 3.0 L solution of NiCl₂ is found to have a chloride concentration of 0.60 M. 33.

The concentration of nickel(II) ions in this solution is

A. 0.30 M B. 0.60 M C. 0.90 M D. 1.2 M

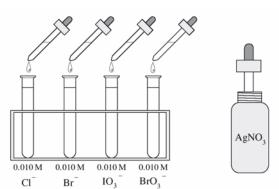
In 0.20 M Na₂CrO₄, the ion concentrations are

	[Na ⁺]	$\left[\operatorname{CrO_4}^{2-}\right]$
A.	0.40 M	0.20 M
B.	0.20 M	0.20 M
C.	0.20 M	0.40 M
D.	0.40 M	0.80 M

35. G8 The ion concentrations in $2.00\,L$ of $0.32\,M$ K_3PO_4 are

	$[K^+]$	[PO ₄ ³⁻]
A.	0.16M	0.16 M
B.	0.32 M	0.32 M
C.	0.48M	0.16 M
D.	0.96 M	0.32 M

At a certain temperature, 7.0 x10⁻⁴ mol MgSO₄ is present in 100.0 mL of solution. 36.

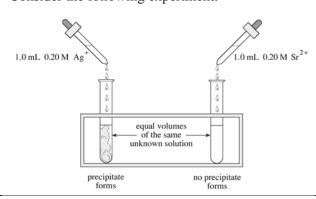

The concentration of the Mg^{2+} in this solution is A. 7.0 x 10⁻⁵ M B. 7.0 x 10⁻⁴ M C. 7.0 x C. $7.0 \times 10^{-3} \text{ M}$ D. 7.0 x 10⁻⁶ M

	SOLUBILITIANDIRECTITIATION					
37.	H1	Which of the followi	ng substances h	as the low	est solubility?	
		A. BaS B. CuS	C. FeS	D. ZnS	•	
38.	H1	In a saturated soluti	on of Zn(OH)2,	the $[\mathbf{Zn}^{2+}]$	is:	
		A. less than 0	.10 M		B. more than 10	.0 M
		C. more than	0.10 M, but less	than 1.0 M	D. more than 1.	0 M, but less than 10.0 M
39.	H1	Which one of the foll	owing salts is so	luble?		
		A. BaSO ₄ B. Ca	CO_3 $C. K_3$	PO_4 D	. Fe(OH)2	
40.	H1	From the list of salts l	pelow, how many	y are consid	lered soluble at 25°C?	
		CuCl ₂ , CaSO ₄ , PbS,	Ag_3PO_4			
		A. zero B. one	C. two	D. three		
41.	H1	Which of the followi	ng salts has the	<u>lowest</u> solu	ıbility?	
		A. copper(I) chloride	B. ammonium	n sulphide	C. potassium hydroxide	D. mercury(II) sulphate

SOLUBILITY AND PRECIPITATION

42.	H1	Saturated solutions of Na_2S , CuS , SnS_2 and Al_2S_3 are prepared at $25^{\circ}C$. The $\left[S^{2-}\right]$ will be greatest in the solution of
		A. Na ₂ S
		B. CuS
		$C. SnS_2$
		D. Al_2S_3
42	LI1	
43.	H1	A soluble magnesium salt is A. MgSO ₃ B. MgCO ₃ C. Mg(NO ₃) ₂ D. Mg ₃ (PO ₄) ₂
44.	H1	Which of the following compounds could be used to prepare a 0.20 M solution of hydroxide
		ion?
		A. KOH B. $Fe(OH)_3$ C. $Mg(OH)_2$ D. $Zn(OH)_2$
45.	H1	Which of the following has a solubility of less than 0.10 M?
16	H1	A. SrS B. SrCl ₂ C. SrSO ₄ D. Sr(OH) ₂
46.	ш	Which of the following is the least soluble in water at 25° C? A. CaSO ₄ B. BaSO ₄ C. CuSO ₄ D. MgSO ₄
47.	H1	Which of the following will be most soluble in water at 25° C?
17.		A. AgI B. PbS C. MgSO ₄ D. Ba(OH) ₂
48.	H1	The least soluble salt in water is
		A. BaS B. AlCl ₃ C. CaSO ₃ D. ZnSO ₄
49.	H1	Which of the following compounds will form a saturated solution with the greatest
		concentration of Ag ⁺ ?
		A. AgI B. AgBr C. AgIO ₃ D. AgBrO ₃
50.	H1	Which of the following is most soluble?
7.1	TT1	A. Na ₂ S B. CaSO ₄ C. PbCO ₃ D. Zn(OH) ₂
51.	H1	Which of the following saturated solutions has the lowest [SO ₄ ²⁻] at 25° C? A. SrSO ₄ B. PbSO ₄ C. CaSO ₄ D. BaSO ₄
52.	H1	A. SrSO ₄ B. PbSO ₄ C. CaSO ₄ D. BaSO ₄ Which of the following compounds is the least soluble in water?
J2.		A. H ₂ S B. KNO ₃ C. ZnSO ₄ D. Ca(OH) ₂
53.	H1	Which of the following saturated solutions has the greatest [CO ₃ ²⁻]?
		A. SrCO ₃ B. CaCO ₃ C. BaCO ₃ D. MgCO
54.	H1	The least soluble salt in water is
	***	A. CaS B. CaSO ₄ C. CaC ₂ O ₄ D. Ca(NO ₃) ₂
55.	H1	At 25° C, which of the following compounds would dissolve to form a saturated solution with
		the greatest [Pb ²⁺]?
56.	H1	A. PbI ₂ B. PbCl ₂ C. PbBr ₂ D. Pb(IO ₃) ₂ Which of the following compounds is the least soluble in water?
50.	111	A. CaS B. Fe(OH) ₃ C. KMnO ₄ D. NH ₄ HC ₂ O ₄
57.	H2	Which of the following will not produce a precipitate when equal volumes of 0.20M solutions
- , ,		are combined?
		A. KOH and CaCl ₂
		B. $Zn(NO_3)_2$ and K_3PO_4
		C. $Sr(OH)_2$ and $(NH_4)_2S$
		D. Na ₂ SO ₄ and Pb(NO ₂) ₂

58. H2 Consider the following 0.10mL solutions:



Equal moles of AgNO₃ are added to each solution. It is observed that a precipitate forms in all

but one solution. Which solution does <u>not</u> form a precipitate?

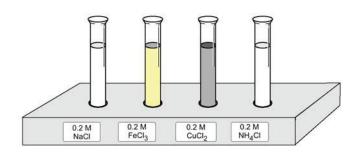
- A. Cl
- B. Br -
- C. IO₃
- D. BrO₃

59. H2 Consider the following experiment:

The unknown solution could contain:

- A. 0.20M OH
- B. 0.20M NO₃
- C. $0.20M PO_4^{3}$
- D. $0.20M \text{ SO}_4^{2}$
- 60. H2

 The mixture that could produce a precipitate of **two** compounds is
 - A. 0.2 M HgSO₄ and 0.2 M FeCl₂
 - B. 0.2 M AgNO₃ and 0.2 M MgCl₂
 - C. 0.2 M K₂CO₃ and 0.2 M CuSO₄
 - D. $0.2 \,\mathrm{M}$ ZnSO₄ and $0.2 \,\mathrm{M}$ Ba(OH),
- 61. H2 The precipitate formed when equal volumes of 0.2 M Sr(OH)₂ and 0.2 M MgS are mixed is
 - A. SrS
 - B. Mg(OH),
 - C. a mixture of Mg(OH), and SrS
 - D. a mixture of Sr(OH), and MgS
- 62. H2 If equal volumes of 0.2 M KBr and 0.2 M FeSO₄ are mixed, then
 - A. no precipitate will be observed.
 - B. a precipitate of FeBr₂ will be observed.
 - C. a precipitate of K₂SO₄ will be observed.
 - D. a precipitate of both K₂SO₄ and FeBr₂ will be observed.
- 63. H2 Which of the following occurs when equal volumes of 0.20M MgS and 0.20M ZnSO₄ are mixed?
 - A. A precipitate does not form.
- B. A precipitate of ZnS forms.
- C. A precipitate of MgSO₄ forms.
- D. Precipitates of MgSO₄ and ZnS form.
- 64. H2 When a student mixes equal volumes of 0.20 M Na₂S and 0.20 M Sr(OH)₂,
 - A. no precipitate forms.


- B. a precipitate of only SrS forms.
- C. a precipitate of only NaOH forms.
- D. precipitates of both NaOH and SrS form.

- 65. When 0.20 M Al₂(SO₄)₃ is added to an equal volume of 0.20 M CaCl₂,
 - A. AlCl₃ precipitates.
- B. CaSO₄ precipitates.
- C. AlCl₃ and CaSO₄ precipitate. D. no precipitate forms.
- 66. When equal volumes of 0.2 M K₂CO₃ and 0.2 M Na₃PO₄ are mixed,
 - A. no precipitate will form.

- B. a precipitate of K₃PO₄ will form.
- C. a precipitate of Na₂CO₃ will form.
- D. a precipitate of both K₃PO₄ and Na₂CO₃ will

- H2 When equal volumes of 0.2 M NH₄Cl and 0.2 M CuSO₄ are combined, 67.
 - A. a precipitate does not form.
- B. a precipitate of CuCl₂ forms.
- C. a precipitate of (NH₄)₂SO₄ forms.
- D. a precipitate of both (NH₄)₂SO₄ and CuCl₂

- 68. H2 A dilute solution of AgNO₃ is added dropwise to each of the following test tubes until a precipitate forms in each tube.

Which solution requires the lowest [Ag⁺] to just begin precipitation?

- A. NaCl
- B. FeCl₃
- C. CuCl₂
- D. NH₄Cl
- 69. Which of the following 0.20M solutions will not form a precipitate when mixed with an equal volume of $0.20 \text{ M Sr } (OH)_2$?
 - A. CaS
- B. NH₄Cl
- C. Na₂SO₄
- D. Ba(NO_3)₂
- 70. Consider the following anions:

	Anion
I.	10.0 mL of 0.20 M Cl ⁻
II.	10.0 mL of 0.20 M OH ⁻
III.	10.0 mL of 0.20 M SO ₃ ²⁻

When 10.0 mL of 0.20 M Pb (NO₃)₂ are added to each of the above, precipitates form in:

- A. I and II only.
- B. I and III only.
- C. II and III only.
- D. I, II and III.
- 71. When equal volumes of 0. 20 M ZnSO₄ and 0. 20 M Sr (OH)₂ are combined,
 - A. no precipitate forms.

- B. a precipitate of only SrSO 4 forms.
- C. a precipitate of only Zn (OH)₂ forms.
- D. precipitates of both SrSO₄ and Zn(OH)₂ form.
- When equal volumes of 0. 20 M SrBr₂ and 0. 20 M AgNO₃ are combined,
 - A. no precipitate forms.

- B. a precipitate of only AgBr forms.
- C. a precipitate of only $Sr(NO_3)_2$ forms.
- D. precipitates of both AgBr and Sr(NO₃)₂ form.
- 73. H3 The complete ionic equation for the reaction between MgS and Sr(OH), is

A.
$$MgS_{(aq)} + Sr(OH)_{2(aq)} \rightarrow Mg(OH)_{2(s)} + SrS_{(s)}$$

B.
$$MgS_{(aq)} + Sr(OH)_{2(aq)} \rightarrow Mg(OH)_{2(s)} + SrS_{(aq)}$$

C.
$$Mg_{(aq)}^{2+} + S_{(aq)}^{2-} + Sr_{(aq)}^{2+} + 2OH_{(aq)}^{-} \rightarrow Mg_{(aq)}^{2+} + 2OH_{(aq)}^{-} + SrS_{(s)}^{-}$$

D.
$$Mg^{2+}_{(aq)} + S^{2-}_{(aq)} + Sr^{2+}_{(aq)} + 2OH^{-}_{(aq)} \rightarrow Mg(OH)_{2(s)} + Sr^{2+}_{(aq)} + S^{2-}_{(aq)}$$

74. H3 The **complete** ionic equation for the reaction between $MgCl_{2(aq)}$ and $AgNO_{3(aq)}$ is

A.
$$Ag^+_{(aq)} + Cl^-_{(aq)} \longrightarrow AgCl_{(s)}$$

B.
$$2AgNO_{3(aq)} + MgCl_{2(aq)} \longrightarrow 2AgCl_{(s)} + Mg(NO_3)_{2(aq)}$$

C.
$$2Ag_{(aq)}^{+} + Mg_{(aq)}^{2+} + 2NO_{3(aq)}^{-} + 2Cl_{(aq)}^{-} \longrightarrow MgCl_{2(s)} + 2Ag_{(aq)}^{+} + 2NO_{3(aq)}^{-}$$

$$D. \ 2Ag^{+}_{(aq)} + 2NO^{-}_{3(aq)} + Mg^{2+}_{(aq)} + 2Cl^{-}_{(aq)} \longrightarrow 2AgCl_{(s)} + Mg^{2+}_{(aq)} + 2NO^{-}_{3(aq)}$$

75. H3 A precipitation reaction occurs when equal volumes of 0.2 M Pb(NO₃)₂ and 0.2 M KI are mixed. The net ionic equation for this reaction is

A.
$$Pb_{(aq)}^{2+} + 2I_{(aq)}^{-} \rightarrow PbI_{2(s)}$$

B.
$$PbI_{2(s)} \rightarrow Pb_{(aq)}^{2+} + 2I_{(aq)}^{-}$$

C.
$$K_{(aq)}^+ + NO_{3(aq)}^- \rightarrow KNO_{3(s)}$$

D.
$$KNO_{3(s)} \rightarrow K^{+}_{(aq)} + NO^{-}_{3(aq)}$$

76. H3
When equal volumes of 0.20 M K₂CrO₄ and 0.20 M AgNO₃ are mixed, a red precipitate is formed. The net ionic equation for this reaction is

A.
$$K^+_{(aq)} + NO_3^-_{(aq)} \rightarrow KNO_{3(s)}$$

B.
$$2Ag^{+}_{(aq)} + CrO_{4}^{2-}_{(aq)} \rightarrow Ag_{2}CrO_{4(s)}$$

C.
$$K_2CrO_{4(aa)} + 2AgNO_{3(aa)} \rightarrow Ag_2CrO_{4(s)} + 2KNO_{3(s)}$$

D.
$$2Ag_{(aq)}^{+} + CrO_{4(aq)}^{2-} + 2K_{(aq)}^{+} + 2NO_{3(aq)}^{-} \rightarrow Ag_{2}CrO_{4(s)} + 2KNO_{3(s)}$$

77. H3 When equal volumes of 0.20 M CuSO₄ and 0.20 M Li₂S are combined, the complete ionic equation is

A.
$$\operatorname{Cu}_{(aq)}^{2+} + \operatorname{S}_{(aq)}^{2-} \rightarrow \operatorname{CuS}_{(s)}$$

$$\text{B.}\quad \text{CuSO}_{4(aq)} + \text{Li}_2 \text{S}_{(aq)} \quad \rightarrow \quad \text{CuS}_{(s)} + \text{Li}_2 \text{SO}_{4(aq)}$$

C.
$$Cu_{(aq)}^{2+} + SO_{4(aq)}^{2-} + 2Li_{(aq)}^{+} + S_{(aq)}^{2-} \rightarrow Li_{2}SO_{4(aq)} + CuS_{(s)}$$

$$\mathrm{D.} \quad \mathrm{Cu}_{(aq)}^{2+} + \mathrm{SO_4}_{(aq)}^{2-} + 2 \mathrm{Li}_{(aq)}^{+} + \mathrm{S}_{(aq)}^{2-} \quad \rightarrow \quad \mathrm{CuS}_{(s)} + 2 \mathrm{Li}_{(aq)}^{+} + \mathrm{SO_4}_{(aq)}^{2-}$$

78. H4 A solution contains CO₃²⁻ and OH⁻. Separation of these two anions by selective precipitation is accomplished by first adding Sr(NO₃)₂ solution, then filtering and finally adding to the filtrate a solution of

D.
$$Zn(NO_3)_2$$

79.	H4	A reagent that may be used to separate C1 ⁻ from S ²⁻ by precipitation is
		A. KNO ₃
		B. AgNO ₃
		C. $Pb(NO_3)_2$
		D. $Al(NO_3)_3$
0.0	114	William 24 17 24 1
80.	Π4	Which of the following ions could be added to an aqueous mixture containing Pb ²⁺ and Ba ²⁺ to
		separate the ions by precipitating one of them? A. I - B. NO ₃ - C. PO ₄ - D. SO ₄ -
81.	H4	A solution of AgNO ₃ is slowly added to a mixture containing 0.10 M I ⁻ ,CI ⁻ ,Br ⁻ and IO ₃ ⁻ .
01.		The precipitate which forms first is:
		A. AgI B. AgCl C. AgBr D. AgIO ₃
82.	H4	Which of the following ions could be used to separate Cl ⁻ (aq) from SO ₄ ²⁻ (aq) by
		precipitation?
		A. Ag^{+} B. Ca^{2+} C. NH_{4}^{+} D. Pb^{2+}
83.	H4	Which of the following could be used to separate Pb ²⁺ from Ba ²⁺ by precipitation?
		A. Na ₂ S B. NaOH C. Na ₂ CO ₃ D. Na ₂ SO ₄
84.	H4	To remove Mg ²⁺ from a solution by precipitation, a student should add:
85.	H4	A. NaI B. KOH C. Li ₂ SO ₄ D. (NH ₄) ₂ S Which of the following causes a precipitate to form when Sr ²⁺ _(aq) is added but
65.	114	not when $\operatorname{Zn}^{2+}_{(aq)}$ is added:
		A S ²⁻ B Cl ⁻ C SO_4^{2-} D CO_2^{2-}
86.	H4	A. S ²⁻ B. Cl ⁻ C. SO ₄ ²⁻ D. CO ₃ ²⁻ Which of the following anions could be used to separate Pb ²⁺ from Ba ²⁺ by precipitation?
		A. Cl ⁻ B. OH ⁻ C. NO ₃ ⁻ D. CO ₃ ²⁻
87.	H4	A solution contains two cations, each having a concentration of 0. 20 M. When an equal volume of
		0.20 M OH ⁻ is added, these cations are removed from the solution by precipitation. These ions are
0.0	11.5	A. Ba^{2+} and K^{+} B. Sr^{2+} and Na^{+} C. Mg^{2+} and Sr^{2+} D. Mg^{2+} and Ca^{2+}
88.	H5	What is observed when H ₂ SO ₄ is added to a saturated solution of CaSO ₄ ?
		A. the pH increases
		 A. the pH increases B. the [Ca²⁺] increases
		B. the $\left[\operatorname{Ca}^{2+}\right]$ increases
89.	H5	 B. the [Ca²⁺] increases C. bubbles of H₂ are given off D. additional CaSO₄ precipitates
89.	Н5	 B. the [Ca²⁺] increases C. bubbles of H₂ are given off D. additional CaSO₄ precipitates Which of the following could dissolve a precipitate of CaC₂O₄ in
89.	Н5	 B. the [Ca²⁺] increases C. bubbles of H₂ are given off D. additional CaSO₄ precipitates
89.	Н5	 B. the [Ca²⁺] increases C. bubbles of H₂ are given off D. additional CaSO₄ precipitates Which of the following could dissolve a precipitate of CaC₂O₄ in
89.	Н5	 B. the [Ca²⁺] increases C. bubbles of H₂ are given off D. additional CaSO₄ precipitates Which of the following could dissolve a precipitate of CaC₂O₄ in a saturated solution of CaC₂O₄? A. NaOH
89.	Н5	 B. the [Ca²⁺] increases C. bubbles of H₂ are given off D. additional CaSO₄ precipitates Which of the following could dissolve a precipitate of CaC₂O₄ in a saturated solution of CaC₂O₄? A. NaOH B. CaC₂O₄
89.	Н5	 B. the [Ca²⁺] increases C. bubbles of H₂ are given off D. additional CaSO₄ precipitates Which of the following could dissolve a precipitate of CaC₂O₄ in a saturated solution of CaC₂O₄? A. NaOH

90. Consider the following equilibrium:

$$\operatorname{Fe(OH)}_{2(s)} \ \rightleftarrows \ \operatorname{Fe}^{2+}_{(aq)} + 2\operatorname{OH}^{-}_{(aq)}$$

Which of the following will cause the equilibrium to shift to the right?

- A. adding KOH
- B. adding Na₂S
- C. adding Fe(OH)₂
- D. adding Fe(NO₃)₂
- 91. H5 Sodium iodide is added to a saturated solution of lead(II) iodide. The net change is
 - A. $[I^-]$ increases and $[Pb^{2+}]$ increases.
 - B. $[I^-]$ decreases and $[Pb^{2+}]$ decreases.
 - C. $[I^-]$ increases and $[Pb^{2+}]$ decreases.
 - D. $[I^-]$ decreases and $[Pb^{2+}]$ increases.
- 92. A student could precipitate silver chloride from a saturated solution of silver chloride by
 - A. water. B. sodium iodide. C. sodium nitrate. D. sodium chloride.
- 93. Consider the following equilibrium system:

$$PbI_{2(s)} + heat \rightleftharpoons Pb_{(aq)}^{2+} + 2I_{(aq)}^{-}$$

Which of the following changes would result in more PbI 2 dissolving?

A. adding more PbI 2

B. increasing the pressure

- C. adding some $Pb(NO_3)_2$
- D. increasing the temperature
- 94. In which of the following would solid AgCl be **most** soluble?
- B. 1 M MgCl₂
- C. 1 M AgNO₃ D. 1M NH₄NO₃

95. H5 Consider the following equilibrium:

$$CaCO_{3(s)} \rightleftharpoons Ca^{2+}_{(aq)} + CO_{3(aq)}^{2-}$$

Which of the following reagents, when added to the equilibrium system, would cause more CaCO₃ to dissolve?

- A. $KNO_{3(s)}$ B. $CaCO_{3(s)}$
- C. $H_2C_2O_{4(s)}$ D. $Na_2CO_{3(s)}$

Consider the following equilibrium: 96.

$$AgCl_{(s)} \rightleftharpoons Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$$

Sodium chloride is added to a saturated solution of AgCl. The amount of solid AgCl will

- A. increase as the equilibrium shifts to the left.
- B. decrease as the equilibrium shifts to the left.
- C. increase as the equilibrium shifts to the right.
- D. decrease as the equilibrium shifts to the right.

97. Consider the following equilibrium:

$$AgCl_{(s)} \rightleftharpoons Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$$

When Br (aq) is added to a saturated solution of AgCl,

A. more AgCl dissolves and its solubility product increases.

B. more AgCl precipitates and its solubility product decreases.

C. more AgCl dissolves and its solubility product remains constant.

D. more AgCl precipitates and its solubility product remains constant.

98. Magnesium carbonate would be most soluble in a solution of

A. MgCl₂ B. NaNO₃ C. Na₂CO₃ D. $Mg(NO_3)_2$

99. Consider the following solubility equilibrium:

$$MgCO_{3(s)} \rightleftharpoons Mg^{2+}_{(aq)} + CO_3^{2-}_{(aq)}$$

The addition of which of the following substances would decrease the solubility of MgCO₃?

B. NaCl C. NaOH D. Na₂CO₃

100. H5 The greatest mass of solid SnS will dissolve in 1.0 L of

> A. H₂O B. 0.10 M MgS C. $0.10 \text{ M} (NH_4)_2 \text{S}$ D. $0.10 \text{ M Sn } (NO_3)_2$

101. H5 Consider the following equilibrium:

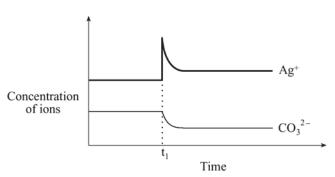
$$MgCO_{3(s)} \rightleftharpoons Mg^{2+}_{(aq)} + CO_3^{2-}_{(aq)}$$

A saturated solution of MgCO 3 is in contact with undissolved solute. More MgCO 3 s () can be dissolved by adding solid

A. oxalic acid. B. sodium carbonate. carbonate.

C. magnesium chloride. D. magnesium

102. H5


When solid AgBr is added to a saturated solution of AgBr, the reaction rates can be described as: RATE OF DISSOLVING RATE OF CRYSTALLIZATION

A.	increases	increases
В.	increases	decreases
C.	decreases	increases
D.	increases	no change

103. H5 Which of the following describes the changes in ion concentrations when 1.0 g of solid ZnS is added to a saturated solution of ZnS?

	$\left[Zn^{2+}\right]$	[S ²⁻]
A.	increases	decreases
B.	decreases	decreases
C.	increases	increases
D.	remains constant	remains constant

Consider the following graph for a saturated Ag ₂CO₃ solution: What change occurred at time t₁?

- A. Water was added.
- B. AgNO_{3 (s)} was added.
- C. Na₂CO_{3 (s)} was added.
- D. The temperature was increased.

The solubility of PbI2 will increase with the addition of

A. PbI ₂ B. heat. C. water. Consider the following equilibrium:

$$SrF_{2(s)} \rightleftharpoons Sr^{2+}_{(aq)} + 2F^{-}_{(aq)}$$

The equilibrium will shift left upon the addition of

A. $H_2O_{(l)}$

B. $SrF_{2(s)}$

C. $SrCl_{2(s)}$

D. NaNO_{3 (s)}

Consider the solubility equilibrium: 107. H5

$$CaCO_{3(s)} \rightleftharpoons Ca^{2+}_{(aq)} + CO_{3(aq)}^{2-}$$

An additional piece of solid CaCO₃ is added to the equilibrium above. The rate of dissolving and rate of crystallization have

	RATE OF DISSOLVING	RATE OF CRYSTALLIZATION
A.	increased	increased
B.	increased	not changed
C.	not changed	increased
D.	not changed	not changed

108. H5 Silver chloride, AgCl, would be least soluble in

A. 1.0 M HCl

B. 1.0 M NaNO₃

C. 1.0 M ZnCl₂

D. 1.0 M AgNO_3

109. H5 Consider the following solubility equilibrium:

$$PbCl_{2(s)} \rightleftharpoons Pb_{(aq)}^{2+} + 2Cl_{(aq)}^{-}$$

A student adds NaCl_(s) to a saturated solution of PbCl₂. When equilibrium is reestablished, how have the concentrations changed from the original equilibrium?

- A. [Pb²⁺] and [Cl⁻] both increased.
- B. $[Pb^{2+}]$ and $[Cl^{-}]$ both decreased.
- C. $[Pb^{2+}]$ decreased and $[Cl^-]$ increased.
- D. [Pb²⁺] increased and [Cl⁻] decreased.

Consider the following solubility equilibrium:

$$BaSO_{3(s)} \rightleftharpoons Ba^{2+}_{(aq)} + SO_{3(aq)}^{2-}$$

Which of the following will result in an increase of $[Ba^{2+}]$?

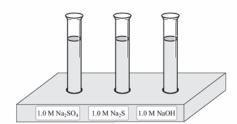
A. adding water

B. adding BaS (s)

C. adding BaSO_{3 (s)}

D. adding Na₂SO_{3 (s)}

111. H6 During a lab on qualitative analysis, an unknown solution containing one cation was analyzed and


following data were collected:

0.2 M Anions Added to the Unknown Solution	Observation	
S ²⁻	no precipitate	
SO ₄ ²⁻	precipitate	
OH-	precipitate	
CO ₃ ²⁻	precipitate	

Which one of the following cations is found in the unknown solution?

- B. Ca²⁺
- C. Sr²⁺
- D. Ba²⁺

A nitrate solution containing an unknown cation is added to each of the following three test tubes. A precipitate forms in one test tube only.

The unknown cation is A. Ag^+ B. Ca^{2+} C. Sr^{2+} D. NH_4^+

A solution containing a single unknown cation is added to three test tubes. The following anions were added and observations were recorded:

TEST TUBE	ANION ADDED	OBSERVATION	
1	SO ₄ ²⁻	precipitate	
2	S ²⁻	precipitate	
3	OH-	precipitate	

The solution contains:

- A. Sr²⁺
 B. Ag⁺ or Pb²⁺
 C. Ca²⁺ or Ba²⁺
 - D. K^+ . NH_4^+ or H^+

A student wishes to identify an unknown cation in a solution. A precipitate does not form with the addition of SO_4^{2-} , but does form with the addition of S^{2-} . Which of the following is the unknown cation?

- $A. Ag^+$

115. H6

SOLUTION	OBSERVATION
NaI	no precipitate
Na ₂ SO ₄	precipitate
NaOH	no precipitate

A solution containing an unknown cation was added to three solutions and the following observations were recorded:

The unknown cation is: A. Pb²⁺ B. Sr ²⁺ C. Ca ²⁺ D. Ag⁺

A solution contains a mixture of SO_4^{2-} and S^{2-} . Which of the following cations could be used to 116. H6 remove only the SO_4^{2-} from the solution by precipitation?

- B. Sr^{2+} C. Pb^{2+}
 - D. Cu²⁺
- Which of the following would precipitate the Ca²⁺ and Mg²⁺ found in hard water? 117. H7
 - B. PO₄³⁻ C. SO₄²⁻ D. CH ₃COO ⁻
- Which of the following could be used to precipitate both Mg²⁺ and Ca²⁺ from hard water? 118. H7 A. lithium sulphate B. sodium phosphate C. potassium sulphide D. ammonium chloride

Two ions found in hard water are Ca ²⁺ and Mg ²⁺. Which of the following will precipitate only one of these ions?

A. I -

 $B S^{2-}$

C. SO₄²⁻

D. CO₃²⁻

QUANTITATIVE ASPECTS

120. Il Identify the **most** soluble sulphide.

A. HgS, $K_{sp} = 1.6 \times 10^{-54}$

B. PbS, $K_{sp} = 7.0 \times 10^{-29}$

C. FeS, $K_{sp} = 3.7 \times 10^{-19}$

D. MnS, $K_{sp} = 2.3 \times 10^{-13}$

121. II Consider the following equilibrium:

 $NH_4Cl_{(s)} + energy \rightleftharpoons NH_{4(aq)}^+ + Cl_{(aq)}^-$

Which of the following will increase the solubility of ammonium chloride?

A.stirring the solution B.adding more water C.adding more $NH_4Cl_{(s)}$ D. increasing the temperature

122. I2 Which one of the following equilibrium systems is described by a K_{sp} ?

A. $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$

B. $CaCO_{3(s)} \rightleftharpoons Ca_{(aq)}^{2+} + CO_{3(aq)}^{2-}$

C. $Ca_{(aq)}^{2+} + CO_{3(aq)}^{2-} \rightleftharpoons CaCO_{3(s)}$

D. $Ca(OH)_{2(aq)} + H_2CO_{3(aq)} \rightleftharpoons CaCO_{3(s)} + 2H_2O_{(l)}$

123. I2 The K_{sp} expression for calcium hydroxide is

A. $K_{sp} = \left[Ca^{2+} \right] \left[OH^{-} \right]^{2}$

B. $K_{sp} = \frac{1}{\left[\operatorname{Ca}^{2+}\right]\left[\operatorname{OH}^{-}\right]^{2}}$

C. $K_{sp} = [Ca^{2+}][2OH^{-}]^{2}$

D. $K_{sp} = \frac{1}{\left[\text{Ca}^{2+}\right]\left[2\text{OH}^{-}\right]^{2}}$

124. I2 The solubility product expression for a saturated solution of $Fe_2(SO_4)_3$ is

A.
$$K_{sp} = [Fe^{3+}]^2 [SO_4^{2-}]^3$$

B.
$$K_{sp} = [2Fe^{3+}][3SO_4^{2-}]$$

C.
$$K_{sp} = \frac{\left[Fe^{3+}\right]^2 \left[SO_4^{2-}\right]^3}{\left[Fe_2(SO_4)_3\right]}$$

D.
$$K_{sp} = \frac{\left[2Fe^{3+}\right]\left[3SO_4^{2-}\right]}{\left[Fe_2(SO_4)_3\right]}$$

125. I2 The K_{sp} expression for $Ca_3(PO_4)_2$ is

A.
$$K_{sp} = \frac{\left[Ca^{2+}\right]^3 \left[PO_4^{3-}\right]^2}{\left[Ca_3(PO_4)_2\right]}$$

B.
$$K_{sp} = \frac{[2Ca^{2+}][3PO_4^{3-}]}{[Ca_3(PO_4)_2]}$$

C.
$$K_{sp} = [Ca^{2+}]^3 [PO_4^{3-}]^2$$

D.
$$K_{sp} = [2Ca^{2+}][3PO_4^{3-}]$$

126. I2 The K_{sp} expression for a saturated solution of $Ca_3(PO_4)_2$ is

A.
$$K_{sp} = [Ca^{2+}][PO_4^{3-}]$$

B.
$$K_{sp} = [Ca^{2+}]^3 [PO_4^{3-}]^2$$

C.
$$K_{sp} = [3Ca^{2+}][2PO_4^{3-}]$$

D.
$$K_{sp} = [3Ca^{2+}]^3 [2PO_4^{3-}]^2$$

127. I2 The K_{sp} expression for a saturated solution of Ag_2CO_3 is

A.
$$K_{sp} = [Ag_2^+][CO_3^{2-}]$$

B.
$$K_{sp} = [Ag^+]^2 [CO_3^{2-}]$$

C.
$$K_{sp} = [2Ag^+][CO_3^{2-}]$$

D.
$$K_{sp} = [2Ag^+]^2[CO_3^{2-}]$$

128. I2 Solid Ag₂CrO₄ is added to water to form a saturated solution.

The K_{sp} value can be calculated by

- A. $K_{sp} = \left[\text{CrO}_4^{2-} \right]^2$
- B. $K_{sp} = \left[\text{CrO}_4^{2-} \right]^3$
- C. $K_{sp} = \frac{\left[\text{CrO}_4^{\ 2^-}\right]^3}{2}$
- D. $K_{sp} = 4[CrO_4^{2-}]^3$
- The solubility of CdS = 2.8×10^{-14} . The value of K_{sp} is
 - A. 7.8×10^{-28}
 - B. 2.8×10^{-14}
 - C. 5.6×10^{-14}
 - D. 1.7×10^{-7}
- 130. 13 A compound has a solubility of 7.1x10⁻⁵ at 25°C. The compound is:

A. CuS B. AgBr C. CaCO₃ D. CaSO₄

- 131. I3 The compound Ag₂S has a solubility of 1.3×10^{-4} moles per litre at 25°C. The K_{sp} for this compound is
 - A. 2.2×10^{-12}
 - B. 8.8×10^{-12}
 - C. 1.7×10^{-8}
 - D. 3.4×10^{-8}
- In a saturated solution of zinc hydroxide, at 40° C, the $[Zn^{2+}] = 1.8 \times 10^{-5}$ M.

The K_{sp} of $Zn(OH)_2$ is

- A. 5.8×10^{-15}
- B. 2.3×10^{-14}
- C. 1.8×10^{-14}
- D. 6.5×10^{-10}
- In a saturated solution of manganese(II) hydroxide, $Mn(OH)_2$, $[Mn^{2+}]$ equals 4.5×10^{-5} M. Therefore, the K_{sp} of $Mn(OH)_2$ is
 - A. 9.1×10^{-14}
 - B. 3.6×10^{-13}
 - C. 2.0×10^{-9}
 - D. 4.1×10^{-9}
- 134. I3 At a certain temperature, the solubility of BaF₂ is 7.4×10^{-3} moles per litre. The K_{sp} of BaF₂ is
 - A. 1.6×10^{-6}
- B. 5.5×10^{-5}
- C. 1.1×10⁻⁴
- D. 7.4×10^{-3}

135. I3	The solubility of manganese(II) sulphide is 1.7 ×10 ⁻⁷ M at 25°C. The solubility product
155. 15	constant is
136. I 3	A. 2.9×10^{-14} B. 1.7×10^{-7} C. 3.4×10^{-7} D. 4.1×10^{-4} The solubility of barium fluoride is 3.6×10^{-3} M. The solubility product constant is:
	A. 4.7×10^{-8} B. 1.9×10^{-7} C. 1.3×10^{-5} D. 2.6×10^{-5}
137. I3	The solubility of MnS is 4.8×10 ⁻⁷ M, at 25°C. The K _{sp} value is
	A. 2.3×10^{-13} B. 4.8×10^{-7} C. 9.6×10^{-7} D. 6.9×10^{-4}
138. I3	At 25°C, the solubility of an unknown compound is 7.1x10 ⁻⁵ M. The compound is
	A. CuI B. AgI C. CaCO ₃ D. CaSO ₄
139. I3	The solubility of barium oxalate, BaC_2O_4 , is 4.8 $\times 10^{-4}$ M. The value of K_{sp} is
	A. 2.3×10^{-7} B. 4.8×10^{-4} C. 2.4×10^{-4} D. 2.2×10^{-2}
140. I3	The solubility of PbS is 2.9×10^{-14} M. What is the value of K_{sp} for PbS?
	A. 8.4×10^{-28} B. 2.9×10^{-14} C. 5.8×10^{-14} D. 1.7×10^{-7}
141. I3	The solubility of FeF ₂ is 8.4x10 ⁻³ M. The K _{sp} value is
	A. 5.9×10^{-7} B. 2.4×10^{-6} C. 7.1×10^{-5} D. 8.4×10^{-3}
142. I3	The solubility of SnS is 3.2 x 10 ⁻³ M. The value of K_{sp} is
1.42 12	A. 1.0 x10 ⁻⁵ B. 3.2 x 10 ⁻³ C. 6.4 x 10 ⁻³ D. 5.7 x 10 ⁻²
143. I3	The solubility of Mn (IO ₃) ₂ is 4.8×10^{-3} M. What is the value of K_{sp} ?
144. I4	A. 1.1×10^{-7} B. 4.4×10^{-7} C. 7.1×10^{-6} D. 1.1×10^{-1}
144. 14	How many moles of solute are dissolved in 200.0 mL of a saturated solution of FeS?
	A. 1.2×10^{-19}
	B. 6.0×10^{-19}
	C. 1.5×10^{-10}
	D. 7.7×10^{-10}
145. I 4	The solubility of magnesium carbonate is:
1.0. 1.	A. 4.6×10^{-11} M B. 3.4×10^{-6} M C. 6.8×10^{-6} M D. 2.6×10^{-3} M
146. I 4	The molar solubility of iron(II) sulphide is
1.0. 1.	A. 3.6×10^{-37} M B. 3.0×10^{-19} M C. 6.0×10^{-19} M D. 7.7×10^{-10} M
147. I 4	At 25°C, the solubility of Mg (OH) ₂ is
	A. 1.1×10^{-32} M B. 5.6×10^{-12} M C. 2.4×10^{-6} M D. 1.1×10^{-4} M
148. I 4	The solubility of AgBrO ₃ is
	A. $2.8 \times 10^{-9} \text{ M}$ B. $5.3 \times 10^{-5} \text{ M}$ C. $1.1 \times 10^{-4} \text{ M}$ D. $7.3 \times 10^{-3} \text{ M}$
149. I 4	The relationship between the solubility of SrF_2 and its K_{sp} is
	The relationship between the solutions of our 2 and its 18 sp is
	$\sqrt[3]{K_{sp}}$
	A. solubility = $\frac{\sqrt[3]{K_{sp}}}{4}$
	$\sqrt{K_{\rm sp}}$
	B. solubility = $\sqrt[3]{\frac{K_{sp}}{2}}$
	$\sqrt{K_{sp}}$
	C. solubility = $\sqrt[3]{\frac{K_{sp}}{4}}$
	D. colubility $= \sqrt{V}$
	D. solubility = $\sqrt{K_{sp}}$
150. I4	The solubility of MgCO ₃ is
	· c
	A. 4.6x10 ⁻¹¹ M B. 6.8 x 10 ⁻⁶ M C. 1.4 x 10 ⁻⁵ M D. 2.6 x 10 ⁻³ M
151. I4	A. 4.6x10 ⁻¹¹ M B. 6.8 x 10 ⁻⁶ M C. 1.4 x 10 ⁻⁵ M D. 2.6 x 10 ⁻³ M At 25° C, the solubility of AgBr is
151. I 4	A. 4.6x10 ⁻¹¹ M B. 6.8 x 10 ⁻⁶ M C. 1.4 x 10 ⁻⁵ M D. 2.6 x 10 ⁻³ M

152. I 4	The solubility of SrF_2 is		
153. I 5	A. 4.3 x10 ⁻⁹ M B. 6.6 x10 ⁻⁵ M C. 1.0 x10 ⁻³ M D. 1.6 x10 ⁻³ M		
133. 13	In an experiment, a student mixes equal volumes of 0.0020 M Pb ²⁺ ions with 0.0040 M I ⁻ ions. The trial ion product is		
	A. 4.0×10^{-9} B. 3.2×10^{-8} C. 1.3×10^{-7} D. 8.0×10^{-6}		
154. I 5	When equal volumes of 0.060 M AgNO ₃ and 0.00090 M NaBrO ₃ are mixed, the		
101. 10	trial ion product (TIP) is		
	A. less than K_{sp} and a precipitate forms. B. greater than K_{sp} and a precipitate forms.		
	C. less than K_{sp} and no precipitate forms. D. greater than K_{sp} and no precipitate forms.		
155. I5	In an experiment, 20.0 mL of 0.0060 M CaCl ₂ and 20.0 mL of 0.0050 M Na ₂ SO ₄ are mixed		
	together. The trial ion product (trial K_{sp}) is		
	, (,,,,,		
	A. 7.5×10^{-6} and a precipitate will form.		
	B. 7.5×10^{-6} and a precipitate will not form.		
	C. 3.0×10^{-5} and a precipitate will form.		
	D. 3.0×10^{-5} and a precipitate will not form.		
156 15	WILL AND		
156. I 5	When equal volumes of 2.0 M Pb(NO ₃) ₂ and 2.0 M KCl are mixed, A. a precipitate forms because trial ion product \le K sp		
	B. a precipitate forms because trial ion product $>$ K sp		
	C. a precipitate does not form because trial ion product $<$ K sp		
	D. a precipitate does not form because trial ion product >K sp		
157. I5	When solutions of Pb(NO ₃) ₂ and NaCl are mixed, the trial ion product (Trial K_{sp}) is 9.8×10^{-6} .		
	Which of the following statements is true?		
	A. A precipitate forms because $Ksp > 9.8 \times 10^{-6}$		
	B. A precipitate forms because $Ksp < 9.8 \times 10^{-6}$		
	C. A precipitate does not form because $Ksp < 9.8 \times 10^{-6}$		
	D. A precipitate does not form because $Ksp > 9.8 \times 10^{-6}$		
158. I5	When equal volumes of 0.20M Pb(NO ₃) ₂ and 0.20 M KI are mixed together,		
	A. a precipitate forms since Trial Ion Product $> K_{sp}$		
	B. a precipitate forms since Trial Ion Product $< K_{sp}$		
	C. no precipitate forms since Trial Ion Product $> K_{sp}$ D. no precipitate forms since Trial Ion Product $< K_{sp}$		
159. I5	If the Trial Ion Product for AgBrO ₃ is calculated to be 1.0×10 ⁻⁷ , then		
	A. a precipitate forms because the Trial Ion Product $> K_{SD}$		
	B. a precipitate forms because the Trial Ion Product $<$ K_{sp}		
	C. no precipitate forms because the Trial Ion Product $> K_{sp}$		
	D. no precipitate forms because the Trial Ion Product $<$ K _{sp}		
160. I 5	When equal volumes of 0. 20 M Ca(NO ₃) ₂ and 0.20 M Na ₂ SO ₄ are combined,		
	A. a precipitate forms because Trial Ion Product $> K_{sp}$		
	B. a precipitate forms because Trial Ion Product $< K_{sp}$		
	C. no precipitate forms because Trial Ion Product $> K_{sp}$		
161. I 6	D. no precipitate forms because Trial Ion Product $<$ K _{sp}		
101. 10	What is the maximum amount of sodium sulphate, Na ₂ SO ₄ , that will dissolve in 1.0 L		
	of $0.10 \text{ M Pb}(\text{NO}_3)_2$ without forming a precipitate?		
	A. 1.8×10^{-8} mol		
	B. 1.8×10^{-7} mol		
	C. $1.3 \times 10^{-4} \text{ mol}$		
	$D_{c} = 1.0 \times 10^{-1} \text{ mol}$		

162. I 6	What is the maximum $[Sr^{2+}]$ that can exist in a solution of 0.10 M Na ₂ SO ₄ ?		
163. I 6	A. 3.4×10^{-7} M B. 3.4×10^{-6} M C. 1.7×10^{-6} M D. 5.8×10^{-4} M What is the maximum [Ag ⁺] that can exist in 0. 20M NaBrO ₃ ?		
103. 10	A 1.1×10^{-5} M B 5.3×10^{-5} M C 2.6×10^{-5} M D 7.3×10^{-3} M		
164. I 6	A. 1.1×10^{-5} M B. 5.3×10^{-5} M C. 2.6×10^{-5} M D. 7.3×10^{-3} M At 25° C, the maximum [Zn ²⁺] that can exist in 0.250 M Na ₂ S is		
	A. $5.0 \times 10^{-26} \mathrm{M}$ B. $2.0 \times 10^{-25} \mathrm{M}$ C. $8.0 \times 10^{-25} \mathrm{M}$ D. $4.5 \times 10^{-13} \mathrm{M}$		
165. I 6	The maximum $[SO_4^{2-}]$ that can exist in 1.0×10^{-3} M $Ca(NO_3)_2$ without a precipitate		
	forming is		
166 16	A. 7.1x10 ⁻⁵ M B. 1.0 x 10 ⁻³ M C. 8.4 x 10 ⁻³ M D. 7.1 x 10 ⁻² M		
166. I 6	Solid NaBrO ₃ is added to a 0. 010 M Ag + solution. What is the [BrO ₃ ⁻] when a precipitate		
	first forms? A. 2.8 x 10 ⁻⁹ M B. 5.3 x 10 ⁻⁷ M C. 5.3 x 10 ⁻³ M D. 1.0 x 10 ⁻² M		
167. I7	The $\left[SO_4^{2-}\right]$ in a saturated solution of PbSO ₄ is		
	$(K_{sp} = 1.1 \times 10^{-8})$		
	16		
	A. $1.2 \times 10^{-16} \text{ M}$		
	B. 5.5×10^{-9} M		
	C. 1.1×10^{-8} M		
	D. $1.0 \times 10^{-4} \mathrm{M}$		
168. I7	The $[OH^-]$ is measured to be 3.3×10^{-3} mol/L in a 100 mL sample of a saturated solution of		
	$Al(OH)_3$. The solubility of $Al(OH)_3$ is		
	A. $1.1 \times 10^{-4} \text{ mol/L}$		
	B. $3.3 \times 10^{-4} \text{ mol/L}$		
	C. $1.1 \times 10^{-3} \text{ mol/L}$		
	D. $3.3 \times 10^{-3} \text{ mol/L}$		
160 17	D. 5.5×10 III0I/L		
169. I7	A student titrates a 25.00 mL sample of well water with 18.2 mL 0.100 M AgNO ₃ to completely		
	precipitate the chloride ion. The $[Cl^-]$ is		
	A. $1.82 \times 10^{-3} \text{ M}$		
	B. 7.28×10^{-2} M		
	C. 1.37×10 ⁻¹ M		
	D. $1.50 \times 10^{-1} \text{ M}$		

ANSWER KEY:

CONCEPT OF SOLUBILITY:

1. C

2. C 3. A 4. C 5. C 6. C 7. B 8. B 9. B 10. A 11. A 12. C		14. B 15. B 16. D 17. A 18. B 19. B 20. D 21. A 22. A 23. D 24. B		26. D 27. C 28. B 29. D 30. D 31. C 32. C 33. A 34. A 35. D 36. C
SOLUBILITY AND PI 37. B 38. A 39. C 40. B 41. A 42. A 43. C 44. A 45. C 46. B 47. C 48. C 49. D 50. A 51. D 52. D	53. D 54. C 55. B 56. B 57. C 58. D 59. A 60. D 61. B 62. A 63. B 64. A 65. B 66. A 67. A 68. B	69. B 70. D 71. D 72. B 73. D 74. D 75. A 76. B 77. D 78. D 79. D 80. A 81. A 82. B 83. A 84. B	85. C 86. A 87. D 88. D 89. A 90. B 91. C 92. D 93. D 94. D 95. C 96. A 97. C 98. B 99. D 100. A	101. A 102. A 103. D 104. B 105. B 106. C 107. A 108. C 109. C 110. B 111. B 112. C 113. B 114. D 115. B

13. C

25. D

118. B 117. B 119. C

QUANTITATIVE ASPECTS	:
100 D	

JANTI	TATIVE AS	SPECTS
120.	D	
121.	D	
122.	В	
123.	A	
124.	A	
125.	C	
126.	В	
127.	В	
128.	D	
129.	A	
130.	C	
131.	В	
132.	В	

133.	В
134.	A
135.	A
136.	В
137.	A
138.	C
139.	A
140.	A
141.	В
142.	A

143. B

144. C 145. D

146.	D
147.	D
148.	D
149.	C
150.	D
151.	D
152.	C
153.	A
154.	C
155.	В
156.	В
157.	D
158.	A

159.	D
160.	A
161.	В
162.	В
163.	C
164.	C
165.	D
166.	C
167.	D
168.	C
169.	В