PRACTICE EXERCISES 1. Fill in the blank spaces in the following table showing equilibrium equations and K_{sp} expressions. | Compound | Solubility Equilibrium Equation | K _{sp} Expression | |-------------------|--|----------------------------------| | | | $K_{sp} = [Mg^{2+}][OH^{-}]^{2}$ | | $Cu_3(PO_4)_2$ | | | | | $Ga(OH)_{3(s)} \rightleftharpoons Ga^{3+}_{(aq)} + 3OH_{(aq)}^{-}$ | | | FeCO ₃ | | | | | | $K_{sp} = [Fe^{3+}][OH^{-}]^{3}$ | 2. Calculate the molar solubility of lead(II) iodate (Pb(IO₃)₂). 3. Calculate the mass of strontium sulfate (SrSO₄) dissolved in 600.0 mL of a saturated solution of SrSO₄. 4. The molar solubility of lead(II) oxalate (PbC₂O₄) is 9.22×10^{-5} M at 25°C. Calculate the value for the K_{sp} of lead(II) oxalate at 25°C. 5. The solubility of thallium(I) iodate (TlIO₃) is $0.67\,\mathrm{g/L}$ at 25° C. Calculate the value for the K_{sp} of thallium(I) iodate at 25° C. 6. The following data were obtained when a 25.0 mL/sample of a saturated solution of Ag₂SO₄ was evaporated to dryness. | Mass of evaporating dish | 38.2397 g | |--------------------------------------|-----------| | Mass of evaporating dish and residue | 38.3522 g | Calculate the K_{sp} of Ag_2SO_4 . Show your steps clearly.