PRACTICE EXERCISES

1. Fill in the blank spaces in the following table showing equilibrium equations and K_{sp} expressions.

Compound	Solubility Equilibrium Equation	K _{sp} Expression
		$K_{sp} = [Mg^{2+}][OH^{-}]^{2}$
$Cu_3(PO_4)_2$		
	$Ga(OH)_{3(s)} \rightleftharpoons Ga^{3+}_{(aq)} + 3OH_{(aq)}^{-}$	
FeCO ₃		
		$K_{sp} = [Fe^{3+}][OH^{-}]^{3}$

2. Calculate the molar solubility of lead(II) iodate (Pb(IO₃)₂).

3. Calculate the mass of strontium sulfate (SrSO₄) dissolved in 600.0 mL of a saturated solution of SrSO₄.

4. The molar solubility of lead(II) oxalate (PbC₂O₄) is 9.22×10^{-5} M at 25°C. Calculate the value for the K_{sp} of lead(II) oxalate at 25°C.

5. The solubility of thallium(I) iodate (TlIO₃) is $0.67\,\mathrm{g/L}$ at 25° C. Calculate the value for the K_{sp} of thallium(I) iodate at 25° C.

6. The following data were obtained when a 25.0 mL/sample of a saturated solution of Ag₂SO₄ was evaporated to dryness.

Mass of evaporating dish	38.2397 g
Mass of evaporating dish and residue	38.3522 g

Calculate the K_{sp} of Ag_2SO_4 . Show your steps clearly.