Name:	Kein	h = 1
Blk:	Date:(1810 BIAT

Chemistry 12
Solubility Lesson # 8
Chloride Titrations

Chloride Titrations		
Recall from Unit V + Chem 11: A Titration is a process where a measured amount of a solution is reacted with ankharm volume of another until a desired Equivalence PT is reached.		
The purpose of carrying out a TITRATION is to <u>determine</u> the ET of an unknown substance.		
For SILVER-CHLORIDE TITRATIONS the Chromate con is used as an indicator. WHY? $AgCl(s) \leftarrow Ag^{+}(aq) + Cl^{-}(aq) \text{ Ksp} = [Ag^{+}][Cl] = 1.8 \times 10^{-10}$ $(WHITE) \text{ (colourless) (colourless)}$		
Ag ₂ CrO ₄ (s) \leftarrow Ag ⁺ (aq) + CrO ₄ ²⁻ (aq) Ksp = [Ag ⁺][CrO ₄ ²⁻] = 1.1 x 10 ⁻¹² (PED) (colourless) (YELLOW) When 3.16 M Ag ⁺ (aq) is slowly added into a beaker containing both 0.10 M Cl ⁻ (aq) and 0.10 M CrO ₄ (aq). What will the first ppt to form be?		
Re-arrange the above Ksp expressions and Solve for [Ag ⁺]: $Ksp = [Ag+][Ci-] \Rightarrow [Ag+] = 1.8 \times 10^{-10}$ $Esp = [Ag+]^2[Cr0]^{-} \Rightarrow [Ag+] = \sqrt{1.1 \times 10^{-12}} = 3.3 \times 10^{-10}$		
The first ppt to form will be $AaC(s)$ as is requires a SMALLER [Ag ⁺]. As more and more Ag ⁺ is added to the beaker the Cl ⁻ is eventually all used up, and at that point the CrO_4^2 will begin to combine with the Ag ⁺ and there will be a distinctive $DRANGE$ colour produced as $Ag_2CrO_4(s)$ is formed. At this point the titration is STOPPED. AT THIS POINT THE MOLES OF Ag ⁺ ADDED = MOLES OF Cl ⁻ PRESENT		
IN SUMMARY: When the colour "orange" is observed		

AGNO3 -> AS+ + NO3

Example 1. In order to find the [Cl] in a	sample of sea water, a 25.0 ml sample
was titrated with 0.500 M AgNO ₃ solutio	n, using sodium chromate as an
indicator. At the EQUIVALENCE POINT	26.8 mL of AgNO₃had been added.
What was the [Cl ⁻] in the sea water?	
Ctom 1 Delegand iii	

Agclis) = Astrag) + Craq) Step 1. Balanced equation

Step 2. Solve for moles of KNOWN

0.500 mol Agt x 0.026BK = 0.0134 mal Agt

Step 3 .Convert to moles of UNKNOWN

0.0134 mol Agt x 1 mol CIT = 0.0134 mol CIT

Step 4. Solve for [] of UNKNOWN > 0.0134 mol C1 = 10.536 M C1-

Example 2. What volume of 0.125 M AgNO₃ will be required to titrate 50.0 mLaf 0.0500 M Cl solution, using the chromate indicator? Step 1. Balanced equation AgC(cs) = Agt (ag) + C(cag)

Step 2. Solve for moles of KNOWN 0,0500 mol Ci × 0.0500 × = 2.50 × 10 2 mol Ci

Step 3. Convert to moles of UNKNOWN

2.50 × 10 2 moles = 2.50 × 10 3 mol Ag = 2.50 × 10 moles = 2.50 ×

Step 4. Solve for volume of UNKNOWN $L = \frac{ml}{M} = \frac{2.50 \times 15^3 \text{ mol } 45\text{M}_3}{0.125 \text{ M}} = \frac{10.0200 \text{ L}}{30.0 \text{ mL}} = \frac{2.50 \times 15^3 \text{ M}}{30.0 \text{ M}} = \frac{2.50 \times 15^3 \text{ M}}{30$

Sample Problem. A 5.29 g sample of impure NaCl was dissolved and diluted to at total volume of 250.0 mL. If 25.0 mL of the NaCl solution required 28.5 mL of 0.300 M AgNO₃ solution to reach the equivalence point, using the chromate indicator, what was the percentage purity of the original NaCl solution?

Recall Percent Purity = actual /expected x 100 %

Seatwork/Homework: Exercises 70-75 pgs 101-102 PLO's: 1