\qquad Date: \qquad
Chemistry 12
Solubililty Lesson \#7
PREDICTING WHETHER A PRECIPITATE WILL FORM
In this section you are asked to determine if when you mix two solutions containing ions whether or not a precipitate will form. This is commonly called the TRIAL ION PRODUCT Calculation or "TIP" (LIKE A TRIAL Keq) Q =
$K s p=$
There are THREE POSSIBLE OUTCOMES once you have calculated the Trial ion Product:

A. $\mathbf{Q}<\boldsymbol{K s p}$

Here we have less than what is needed for a saturated solution so the result is: NO A PPT WILL NOT FORM
B. $Q=K s p$

Here we have just enough for a saturated solution so the result is:
A MINIMUM AMOUNT OF PPT WILL FORM
C. $\mathbf{Q}>\mathrm{Ksp}$

Here we have more than what is needed for a saturated solution so the result is:

YES A PPT WILL FORM

Example 1: Will a precipitate form when 5.0 mL of $6.0 \times 10^{-5} \mathrm{M} \mathrm{Ag}^{+}$mixes with 10.0 mL of $4.2 \times 10^{-6} \mathrm{M} \mathrm{Cl}^{-}$?

1st:

2nd:

3rd:

4th:

Example 2: If 25.0 mL of $4.50 \times 10^{-3} \mathrm{MPb}\left(\mathrm{NO}_{3}\right)_{2}$ is mixed with 35.0 mL if $2.80 \times 10^{-3} \mathrm{M} \mathrm{Mgl}_{2}$, will a precipitate form? 1st:

2nd:

3rd:

4th:

Example 3. What $\left[\mathrm{Cl}^{-}\right]$is required to JUST START precipitation of $\mathrm{AgCl}(\mathrm{s})$ from a $3.6 \times 10^{-3} \mathrm{M}$ solution of Ag^{+}?
1st:

2nd:

3rd:

4th:

