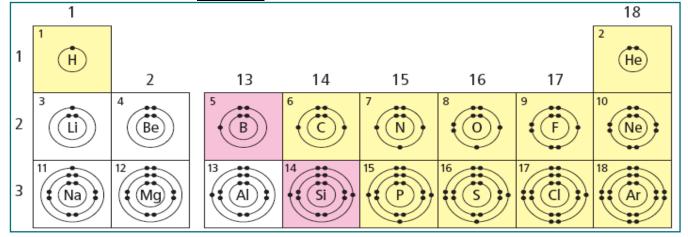
Name:_____ Blk:___Date:_____


Science 9 Notes on:2.3Periodic Table and Atomic Theory

Elements with similar properties have similar <u>electron arrangements</u> Bohr models display the following electron arrangement in shells:

first shell up to 2 electrons	third shell up to 8 electrons
second shell up to 8 electrons	fourth shell up to 18 electrons
-	
	nucleus 2e 8e 8e 18e
	nucleus 2e 8e 8e 18e

Bohr model patterns

Chemical families on the periodic table have the same number of <u>valence electrons</u> Elements in the <u>same period</u> have the same number of <u>shells</u> Period number indicates the <u>number</u> of electron shells

Atom Stability

Noble gases are very **unreactive** because their atoms have filled **valence shells**. A filled valence shell makes atoms **stable**. Atoms with filled shells do not easily trade or share electrons. Other atoms **gain or lose electrons** in order to achieve the stability displayed by the **noble gases**. Gaining or losing electrons turns atoms into **ions**. Metals **lose** electrons to form **positive ions** Non-metals **gain** electrons to form **negative ions** Ions have a similar electron arrangement to the nearest **noble gas**

Example: Sodium ion (Na⁺) has <u>11</u> protons (<u>11⁺</u>) and <u>10</u> electrons (<u>10⁻</u>) for a total charge of <u>1⁺</u>

	Lithium	Magnesium	Chlorine
Atom	Li 3p2,1	Mg 12 p 2,8,2	Cl 17p 2,8,7
Ion	Li+3p2	Mg ² +12 p 2,8	Cl– 17p 2,8,8