Name: _	+ KEY. *	FLUIDS AND DYNAMICS
3lk:	Date:	CHAPTERS 7, 8 & 9

UNIT III CHEMISTRY Key Terms

These are the vocabulary words that you should know for your final exam.

		, ,
Chapter 7	Atomic Theory	Periodic Table
condensation density displacement evaporation expansion Fluid mass melting solidification sublimation volume	atom conductivity density electron element mass neutron nucleus proton subatomic particles John Dalton J.J. Thompson Ernest Rutherford Niels Bohr	alkali metals alkaline earth metals atomic mass atomic number Bohr model chemical symbol electron shell halogens inert gas mass number metal metalloid noble gases non-metal reactivity valence electron valence shell
	UNIT III Key Concepts	X

These are the main ideas from this unit. Fill-in-the-blanks to complete.

<u>Chapter 7: The KMT</u>	explains characteristics	of solids, liquids	and gases

The describes how particles of a solid are closer together than
particles of a <u>liquid</u> . Particles of a gas are spread far <u>or part</u> . (7.1)
The describes how adding energy to particles makes them move faste
and farther apart. (7.1)
Addind and removing ENERGY from matter can cause changes in the state of
matter .(7.1)
Liquids and gases are FLUIDS, forms of matter that can flow. (7.2)
Compression is a way to describe how closely particles are packed together in
a solid, liquid or gas. (7.2)
Density is calculated by dividing MASS by VOLUME. (7.2)

Atomic Theory

	John Dalton proposed that matter is made of ATOMS, which can be part of an
	element (one kind of atom) or a compound (more than one kind of atom joined
	together). (1.3)
	Ernest Rutherford discovered the NUCLEVS, a tiny, dense region at the centre
	of an atom. Inside it you will find PROTOLS & NOTRONS (1.3)
	Most of the volume of an atom is occupied by <u>ELECTRANS</u> , which exist in
	specific "SHELLS" first discovered by Niels Bohr. (1.3 or ENERGY LEVELS)
	Protons have a POSITIVE charge, electrons have a NEGATIVE charge and
	neutrons are NEUTRAL (no charge)
	Atomic Number of protons of an element.
	Atomic MASS is the number of neutrons and protons. Mass # is the atomic
	mass rounded.
	Tons are atoms that have <u>lost</u> or <u>gained</u> electrons.
<u>PERIO</u>	DIC TABLE.
	Each <u>element</u> contains only $\underline{1}$ kind of atom, and all other forms of matter are made
	from combinations of these atoms and elements. (2.1)
	The periodic table lists the elements in order of increasing ATOMIC NUMBER
	arranged into families according to their
	o Families (or groups) are arranged COLUMIS & periods are ROWS.
	o Families/Groups include:
	- ALKALI METALS ex. Li, Na, K
	- ALKALINE EARTH METALS ex. Be, Mg, Ca
	- HALOGENS ex. F, CI, Br
	- NOBLE GASES (aka Inert gases) ex. He, Ne, Ar
	In the <u>periodic table</u> , metals are on the <u>LEFF</u> side, non-metals are on the <u>RIGHT</u> ,
"METALLOIDS"	and FMI-CONDUCTORS form a diagonal line near the right side. (2.2)
Joseph Janes	Elements in the same chemical family have the same number of VALENCE
	electrons in their outermost occupied electron shell. (2.3)
	A <u>Bohr model</u> diagram shows the arrangement of <u>ELECTIONS</u> in a specific
	pattern around the <u>nucleus</u> . (2.3)

Unit 3: CHEMISTRY

Ch. 7 Kinetic Molecular Theory

	-			
1.	7	condensation	Α.	the mass of a given volume
2.	_A_	density	В.	an increase in volume due to a decrease in inter
	-			pressure
3.	上	displacement	C.	form of matter that can flow (liquids & gases)
4.		evaporation	D.	the amount of matter in an object
5.	B	expansion	E.	the amount of space an object takes up when
				placed in a fluid
6.	<u>C</u>	fluid	F.	change of state from solid to gas
7.	D	mass	G.	change of state from solid to liquid
8.	G	melting	Н.	change of state from liquid to gas
9.	5	solidification	١.	change of state from gas to liquid
10.	F	sublimation	J.	change of state from liquid to solid
11.	K	volume	K.	the amount of space an object occupies

12. A student samples an unknown material and finds that 1200ml of the material has a mass of 1080g.

a. What is the density of the material? Show your work (3 steps minimum).

=1080g = 1200 ml = 0,9 a/ml = must have units

b. Would this material sink or float in water? Explain.

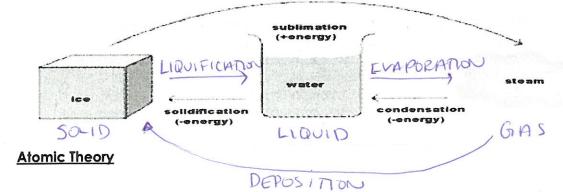
0.9 glmL < 1.00glmL >

FLOAT in water

13. Use this table to help you answer the following question:

Approximate Densities of Common Substances

Fluid	Density (g/mL)	Solid	Density (g/cm³)
hydrogen	0.00009	Styrofoam™	0.005
helium	0.0002	cork	0.24
air	0.0013	oak	0.70
oxygen	0.0014	sugar	1.59
carbon dioxide	0.002	salt	2.16
ethyl alcohol	0.79	aluminum	2.70
machine oil	0.90	iron	7.87
water	1.00	nickel	8.90
seawater	1.03	copper	8.92
glycerol	1.26	lead	11.34
mercury	13.55	gold	19.32

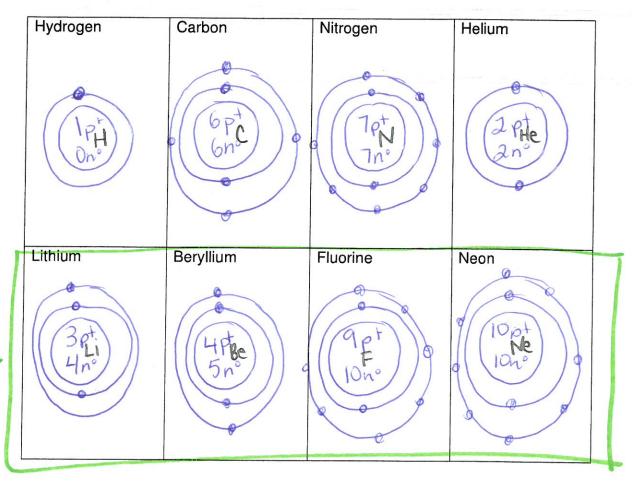

a. You are given an unidentified object along with a container filled with glycerol. You set the object in the container and it sinks. What do you know about the density of the unidentified object?

The density is 1.26 g/mL

b. Liquid mercury has a very high density. Which of the **metals** would float on liquid mercury?

Aluminum, Iron, nickel, copper + lead.

14.) Correctly name each change of state & identify if energy is being added or released.



Draw the following models of the atom and identify the scientist who proposed it:

"Billiard Ball" Model	"Raisin Bun" or Plum Pudding Model	"Planetary" Model
are units	y frame - >	2
	600	o o electrons nucleus
Scientist:	Scientist:	Scientist: Emest
John. Dalton	JJ. Tompson	Rutheford

Periodic Table:

Draw the Bohr models of the following elements in each box. Be sure to show the number of protons and neutrons in the nucleus. Remember that the first orbit can hold up to 2 electrons, the second and third orbits can have up to 8 electrons, and the rest can hold up to 18 electrons.

