| Name:_ | Key    |  |
|--------|--------|--|
| Blk:   | _Date( |  |

## Chemistry 12 REACTION KINETICS Lesson # 11-13 CATALYTIC ACTION

CATALYST- a substance which provides an overall rxn A chemical reaction that involves a catalyst will have a TWO STEP reaction

mechanism, as illustrated below:

PE RXN Proceeds

NOTE: If the forware rate DOUBLES, the reverse reaction rate DOUBLES TOO!!!

Comparing the Potential Energy Diagram vs. Kinetic Energy Distribution Curve:



Uncatalyzed vs Catalyzed reaction mechanisms for OCI- + I- ---> OI- + CI-UNCATALYZED REACTION:

CATALYZED REACTION:

Step 1. CIO+ HZQ - CIOH + OH

I + CIOH -> IOH + CI-Step 2.

IOH + DH-Step 3. Overall:

Catalyst -> H20 Rxn Intermediates -> CIOH, OH-, IOH

|   | NOTE:  1. A Catalyst is an ACTIVE PARTICIPANT in a chemical reation in that it is first  VSCD then REGENERATED in a later step in the Reaction Mechanism                            |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 2. The is THE UNCHANGED for the catalyzed and uncatalyzed reactions.                                                                                                                |
|   | 3. Like a REACTION INTERMEDIATE a <u>CATALYST</u> appears in the elementary processes but not in the <u>OVERALL RXID</u> !!!! However, it is first used and then it is regenerated. |
|   | Example 1. For the following reaction mechanisms identify the REACTION INTERMEDIATES, CATALYSTS and the OVERALL BALANCED CHEMICAL REACTION. a.                                      |
|   | Step 1: 2 SO + $HGI> S_2O_2HCI$ Step 2: $S_2O_2HCI + H_2> S_2O_2HCI$ Step 3: $S_2O_2HCI + H_2> S_2O_2HCI$ Catalyst $\rightarrow HCI$                                                |
|   | $250 + 2H_2 \rightarrow 5_2 + 2H_20$                                                                                                                                                |
|   | b. Step 1. $O_3$ + ENERGY> $O_2$ + $O_3$                                                                                                                                            |
| F | 2xN INT'S -> / (forward slash)                                                                                                                                                      |
| ( | CATALYSTS -> (backward slash)                                                                                                                                                       |

Seatwork/Homework: Read pgs 34-36 then do Exercises 56-63

PLO's: C3, C4, C5 + C6

ALL PLO's are due NEXT CLASS!!!!