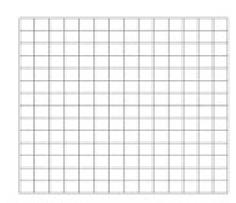
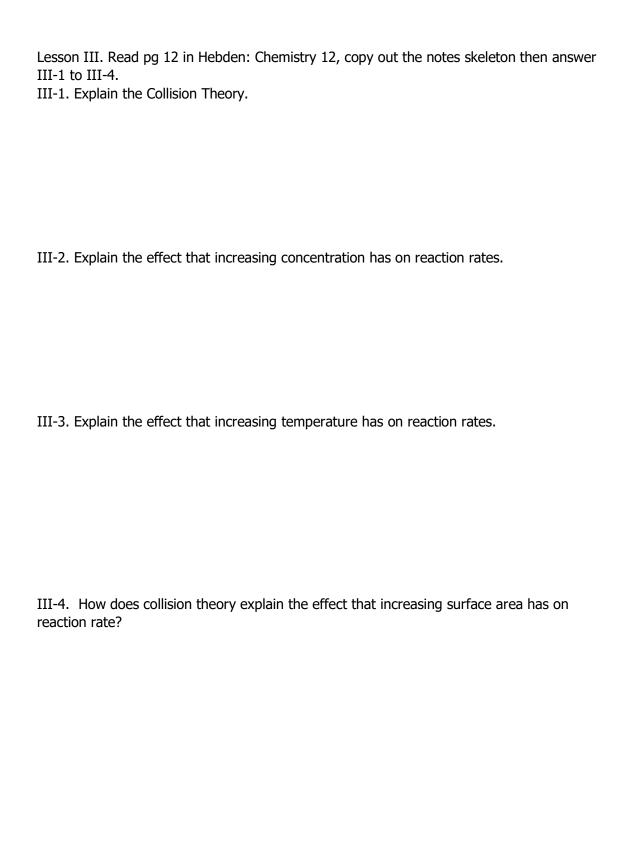
	Name:			
	Blk:Date:			
	Reaction Kinetics Assignment			
Due:				


Lesson I. Read pages 1-5 in Hebden: Chemistry 12 then answer I-1 to I-4.

- I-1. What is Reaction Kinetics?
- I-2. What is the formula used for calculating reaction rate? Identify the parts of the formula.
- I-3. List four different properties that can be used to determine reaction rate.
- I-4. The hydrolysis of chloro butane produces butanol and hydrochloric acid:

$$C_4H_9CI + H_2O \rightarrow C_4H_9OH + HCI$$


The concentration of cholo butane at different times during the reaction is given:

Time (s)	$[C_4H_9CI] = M$
0	0.1000
50	0.0905
100	0.0820
150	0.0741
200	0.0671
300	0.0549
400	0.0439
700	0.0210
800	0.0170

- a. Why is the concentration decreasing?
- b. Plot the data on the graph paper proper?
- c. What is the slope of the line?
- d. What are the units for the slope?

Lesson II. Read pages 5-10 in Hebden: Chemistry 12, copy out the notes skeleton then answer II-1 to II-6. II-1. Identify the factors that affect reaction rate:
II-2. What is the difference between homogenous and heterogenous reactions? Provide examples of both.
II-3. Rank the reaction rates among phases in homogeneous reactions:
II-4. What do catalysts and inhibitors do for a chemical reaction?
II-5. The reaction of solid Iron in the presence of aqueous sulphuric acid produces aqueous Iron (II) sulphate and hydrogen gas. If the reaction occurs in a closed container whose volume can be changed, list four ways of increasing the reaction rate.
II-6. Provide three examples of everyday situations that require the control of reaction rates:

Lesson IV. Read pages 13-19 in Hebden: Chemistry 12. Watch my <u>flipped classroom lesson</u> copy out the notes skeleton then answer IV-1 to IV-5. IV-1. Draw two potential energy diagrams:				
a. Endothermic reaction	b. Exothermic reaction			
IV-2. Write out the formula for determining ΔH .				
IV-3.				
a. What is the ΔH value for an endothermic reaction?				
b. What is the ΔH value for an exothermic reaction?				
IV-4. An increase in what temperature will result in the	doubling of a SLOW reaction rate?			
IV-5. Explain, in terms of kinetic energy, why increasing reaction rate.	g the temperature will increase the			

Lesson V. Read pages 20-25 in Hebden: Chemistry 12. Watch my <u>flipped classroom lesson</u>, copy out the notes skeleton and then answer V-1 to V-3.

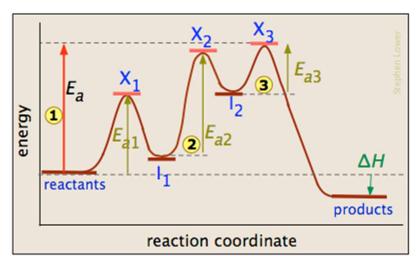
V-1. What is activation energy?

V-2. Describe the activated complex in terms of its potential energy (PE), stability and structure.

V-3. Draw and label a potential energy diagram for the following. Be sure to label and identify the reactants, the activated complex, the products, and the values for the ΔH , the Ea(f) and the Ea (r).

a. 2 NOBr (g)
$$\rightarrow$$
 2 NO (g) + Br₂ (g); ΔH = -50 KJ and Ea (f) = 30 kJ

b. $H_2(g) + I(g) \rightarrow 2 HI(g)$; Ea (f) = 45 KJ and Ea (r) = 20 kJ

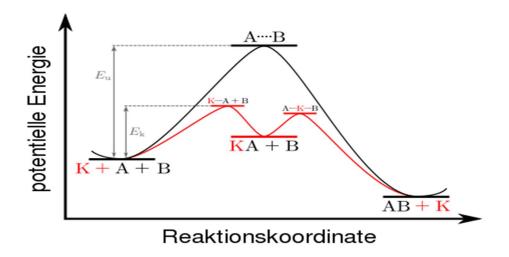

Lesson VI. Read pages 26-30 in Hebden: Chemistry 12. Watch my <u>flipped classroom lesson</u>, copy out the notes skeleton then answer VI-1 to VI-4

VI-1. What is the definition of a reaction mechanism?

VI-2. Describe a reaction intermediate in terms of its stability and structure.

VI-3. What is the rate-determining step?

VI-4. Using the following diagram to answer the questions below:



- a. How many steps are in this reaction mechanism?
- b. Which step is the rate determining step?
- c. Is the overall reaction endothermic or exothermic
- d. Would the symbol on the ΔH be positive or negative?

Lesson VII. Read pages 30-36 in Hebden: Chemistry 12. Watch my <u>flipped classroom lesson</u>. Answer VII-1 to VII-3

VII-1. What is the definition of a catalyst? Provide two specific catalysts and where they are used?

VII-2. Use the diagram below to answer the following:

What does the above diagram show about the catalytic reaction compared to the uncatalyzed reaction?

VII-3. Identify the overall reaction, the reaction intermediate(s) and the catalyst(s) from given the following reaction mechanism:

Step 1: HCOOH (aq) + H^+ (aq) \rightarrow HCOOH₂⁺ (aq)

Step 2: $HCOOH_2^+(aq) \rightarrow HCO^+(aq) + H_2O(I)$

Step 3: $HCO^+(aq) \rightarrow H^+(aq) + CO(g)$

Overall:

Reaction intermediate(s):

Catalyst(s)