Name:_		
Blk:	Date:	

Chemistry 12 REACTION KINETICS Lesson # 11-13 CATALYTIC ACTION

CA	TA	1 1	10	7
UA	IA	L	3	1 -

A chemical reaction that involves a catalyst will have a TWO STEP reaction mechanism, as illustrated below:

NOTE: If the forware rate DOUBLES, the reverse reaction rate DOUBLES TOO!!!

Comparing the Potential Energy Diagram vs. Kinetic Energy Distribution Curve:

Uncatalyzed vs Catalyzed reaction mechanisms for OCI- + I- ---> OI- + CI-UNCATALYZED REACTION:

CATALYZED REACTION:

Step 1.

Step 2.

Step 3.

Overall:

NOTE:

1. A Catalyst is an ACTIVE PARTICIPANT in a chemical reation in that it is first ______ then _____ in a later step in the Reaction Mechanism
 2. The ______ is THE UNCHANGED for the catalyzed and uncatalyzed reactions.
 3. Like a REACTION INTERMEDIATE a ______ appears in the elementary processes but not in the ______ !!!! However, it is first used and then it is regenerated.

Example 1.

For the following reaction mechanisms identify the REACTION INTERMEDIATES, CATALYSTS and the OVERALL BALANCED CHEMICAL REACTION.

a.

Step 1: 2 SO + HCI ---> S2O2HCI

Step 2: S₂O₂HCl + H₂ ---> S₂O + H₂O + HCl

Step $3:S_2O + H ----> S_2 + H_2O$

b.

Step 1. O₃ + ENERGY ---> O₂ + O

Step 2. $O_3 + NO ---> NO_2 + O_2$

Step 3. $NO_2 + O ---> NO + O_2$

Seatwork/Homework: Read pgs 34-36 then do Exercises 56-63

PLO's: C3, C4, C5 + C6

ALL PLO's are due NEXT CLASS!!!!