Name:	Key	
Blk:	_Date:	

Chemistry 11

Solution Chemistry
Lesson #2 Polarity of Molecules
There are two classifications for bonding: 1. Between atoms with a molecule: Intra-molecular
2. Between atoms in molecules: inter-molecular
adjacent In unit IV we focused on intra-molecular bonding and learned that <u>electronegative</u> helps
i. DEN 0.0.0.5 = true covalent bond differences
III. DEN 0.5 - 1.6 = polar covalnt bort III. DEN > 1.7 = 10nic bond
Inter-molecular bonding is also divided into three categories: i. di-pole - dipole force / bond ii. H-bond
"London force / bond
To help determine the type of inter-molecular bonding you first need to determine if the molecule isorororolar
Polar Molecules: 1. must contain a dipole (2 atoms of different EN
2. be asymmetric (lack symmetry)
ASYMMETRIC EXAMPLES: HCI CH ₃ Cl H ₂ O
H-C1 H-C-H
C) H
Non-Polar Molecules:
1 might contain a dipole
2 be symmetrical
SYMMETRIC EXAMPLES: Br ₂ BH ₃ BeF ₂
4 T/H
$Br-Br$ $\{B\}$ $F-Be-F$

Di-pole Di-pole Bond: force that holds polar molecules
together.due to permanent dipole (electronegative differences)

Hydrogen Bond: Specialized dipole-dipole bond between polar molecules that contain H and one of either N, D or F.

London Force: only force that holds non-polar molecules together due to temporary dipoles created by the movement of electrons.

RELATIVE strengths of bonds:

INTRA >> INTER IDNIC & COVALENT >> H-BOND > DIPOLE- >> FOR CBS Process of SOLVATION: the ability for a solute to dissolve in a solvent the saying is: "Ike dissolves like " POLAR solutes are SOLUBLE in POLAR solvents, and Salt in water NON-POLAR solutes are SOLUBLE in NON-POLAR solvents. Paint in paint-thinner POLAR solutes are INSOLUBLE in NON-POLAR solvents.....HOWEVER: NON-POLAR solutes are only SOMEWHAT INSOLUBLE in POLAR solvents

This exception has to do with the fact that all substances (be they polar or non-polar) are held together by **London**. Non-polar solutes are ONLY held together by these very WEAK forces and the STRONGER POLAR bonds can overcome the weaker forces and cause the non-polar solute to dissolve.

* why water is the ultimate SOLVENT (it's polar) WH-Bond.