| Name:_ | | | |--------|-------|--| | Blk: | Date: | | ## Chemistry 11 STOICHIOMETRY PERCENT YIELD WORKSHEET 1.20.0 grams of Bromic acid, HBrO₃, is reacted with excess HBr: $HBrO_3$ (aq) + 5 HBr (aq) ----> 3 H_2O (I) + 3 Br_2 (aq) - a. What is the THEORETICAL YIELD of Br2 for this reaction? - b. If 47.3 g of Br₂ is produced, what is the PERCENTAGE YIELD of Br₂? - 2. For the following reaction: $Ba(NO_3)_2$ (aq) + Na_2SO_4 (aq)----> $BaSO_4$ (s) + 2 $NaNO_3$ (aq) When 35.0 g of $Ba(NO_3)_2$ is reacted with excess Na_2SO_4 , 29.8 g of $BaSO_4$ is recovered by the chemist. - a. Calculate the THEORETICAL YIELD of BaSO₄. - b. Calculate the PERCENT YIELD of BaSO₄. - 3. Yeast can act on sugar, such as glucose, $C_6H_{12}O_6$, to produce ethyl alcohol, C_2H_5OH , and Carbon dioxide. $$C_6H_{12}O_6$$ (s) ---> 2 C_2H_5OH (l) + CO_2 (g) If 223 g of ethyl alcohol are recovered after 1.63 kg of glucose react, what is the PERCENTAGE YIELD of ethyl alcohol? - 4. Solid Calcium carbonate decomposes into solid Calcium oxide and Carbon dioxide gas. Under certain circumstances this reaction proceeds with a 92.4% yield of Calcium oxide. How many grams of Calcium oxide can the chemist actually obtain if 12.4 g of Calcium carbonate is heated? - 5. The following reaction proceeds with a 70.0% yield. $$C_6H_6$$ (I) + HNO₃ (aq) ---> $C_6H_5NO_2$ (I) + H₂O (I) Calculate the mass of $C_6H_5NO_2$ actually obtained if 12.8 g of C_6H_6 reacts with excess HNO_3 . 6. The reaction of toluene, C_7H_8 , with Potassium permanganate, $KMnO_4$, gives less than a 100% yield. C_7H_8 (I) + 2 KMnO₄ (aq) ---> KC₇H₅O₂ (aq) + 2 MnO₂ (s) + KOH (aq) + H₂O (I) - a. 8.60 g of C_7H_8 is reacted with excessKMnO₄ . What is the THEORETICAL YIELD, in grams, of $KC_7H_5O_2$? - b. If the Percent Yield is 70.0%, what mass of KC₇H₅O₂ can be actually obtained? - c. What mass of C_7H_8 is needed to produce 13.4 g of $KC_7H_5O_2$ assuming a yield of 60.0%? | Name: | Key | | |-------|-------|--| | Blk: | Date: | | Ba ## Chemistry 11 STOICHIOMETRY PERCENT YIELD WORKSHEET | 1.20.0 grams of Bromic acid, HBrO ₃ , is reacted with excess HBr: HBrO ₃ (aq) + 5 HBr (aq)> 3 H ₂ O (l) + 3 Br ₂ (aq) a. What is the THEORETICAL YIELD of Br ₂ for this reaction? b. If 47.3 g of Br ₂ is produced, what is the PERCENTAGE YIELD of Br ₂ ? b) 63.6 | |--| | 2. For the following reaction: Ba(NO ₃) ₂ (aq) + Na ₂ SO ₄ (aq)> BaSO ₄ (s) + 2 NaNO ₃ (aq) When 35.0 g of Ba(NO ₃) ₂ is reacted with excess Na ₂ SO ₄ , 29.8 g of BaSO ₄ is recovered by the chemist. a. Calculate the THEORETICAL YIELD of BaSO ₄ . b. Calculate the PERCENT YIELD of BaSO ₄ . b) 95.2 % B | | 3. Yeast can act on sugar, such as glucose, $C_6H_{12}O_6$, to produce ethyl alcohol, C_2H_5OH , and Carbon dioxide. $C_6H_{12}O_6 \text{ (s)> 2 } C_2H_5OH \text{ (l) + CO}_2 \text{ (g)} \qquad \textbf{26.8\%} \text{ etherwise}$ If 223 g of ethyl alcohol are recovered after 1.63 kg of glucose react, what is the PERCENTAGE YIELD of ethyl alcohol? | | 4. Solid Calcium carbonate decomposes into solid Calcium oxide and Carbon dioxide gas. Under certain circumstances this reaction proceeds with a 92.4% yield of Calcium oxide. How many grams of Calcium oxide can the chemist actually obtain if 12.4 g of Calcium carbonate is heated? | | 5. The following reaction proceeds with a 70.0% yield. $C_6H_6\ (I) + HNO_3\ (aq)> C_6H_5NO_2\ (I) + H_2O\ (I)$ Calculate the mass of $C_6H_5NO_2$ actually obtained if 12.8 g of C_6H_6 reacts with excess HNO_3 . $G_6H_5NO_2\ (I) + H_2O\ (I)$ Calculate the mass of $C_6H_5NO_2$ actually obtained if 12.8 g of C_6H_6 reacts with excess HNO_3 . | | C_7H_8 (I) + 2 KMnO ₄ (aq)> KC ₇ H ₅ O ₂ (aq) + 2 MnO ₂ (s) + KOH (aq) + H ₂ O (I) a. 8.60 g of C ₇ H ₈ is reacted with excessKMnO ₄ . What is the THEORETICAL YIELD, in grams, of KC ₇ H ₅ O ₂ ? b. If the Percent Yield is 70.0%, what mass of KC ₇ H ₅ O ₂ can be actually obtained? c. What mass of C ₇ H ₈ is needed to produce 13.4 g of KC ₇ H ₅ O ₂ assuming a yield of 60.0%? | | b) 10.5 g KC7H502 |