Name:
Chemistry 11 STOICHIOMETRY AND PERCENT YIELD
Sometimes 100% of the expected amount of products can not be obtained from a chemical reaction.
The term <u>Percent</u> <u>yield</u> is used to describe the amount of products that are actually obtained as a percentage of the expected amount.
Reasons for less than 100% yield: 1. all of the reactant may not react (impure)
2. Some of the product is lost (in filer etc).
PERCENT YIELD = mass of product obtained actual Expected Expected Expected
Example 1: When 15.0 g of CH ₄ is reacted with an excess of Cl ₂ according to the reaction: CH ₄ + Cl ₂ > CH ₃ CI + HCI
a total of 29.7 g of CH ₂ Cl is formed. What is the percent yield of the reaction? Step 1: Write out the balanced equation
CHy + Cl2 -> CH3CI + HCI
Step 2: Write out the PERCENT YIELD FORMULA and identify what you are looking for $P. Y = \frac{ACTUAL}{Expected} \times 100^{\circ}/_{\circ}$ $\frac{39.7g}{2} = ?$
Step 3: Identify the ACTUAL amount produced:
Step 4: Calculate the EXPECTED amount using STOICHIOMETRY 15.0g CHy Imal CHy Imal CHy 50.5g Ch3C1 = 47.3g CH3C1 X 16.0g CHy Imal CHy Imal CHy Imal CH3C1
Step 5: Plug the ACTUAL and EXPECTED into the formula
P.Y = 29.79 CH3Cl x 100% = [62.8%]

	Example 2: What mass of K_2CO_3 is produced when 1.50 g of KO_2 is reacted with an excess of CO_2 according to the reaction: $4 KO_2$ (s) + 2 CO_2 (g)> 2 K_2CO_3 (s) + 3 O_2 (g)
	If the reaction has a 76.0 % yield? Step 1: Write out the balanced equation
	4 KQ + 2 CO2 -> 2 KzCO3 + 302
	Step 2: Write out the PERCENT YIELD FORMULA and identify what you are looking for
	P. Y = actual × 100% = 76.0% = expected
	Step 3: Calculate the EXPECTED amount using STOICHIOMETRY
	1.50g koz + 1 mol koz + 2 mol koz + 138.2g = 1.46 g kz003 71.1g koz + 4 mol koz 1 mol kzco3
	Step 4: Now use the Percent Yield Formula + expected to solve for ACTUAL
	$76.0^{\circ}/_{0} = \frac{x}{1.46g} \rightarrow 0.760 \times 1.46g = x$ $\frac{1.11g k_{z} co_{z}}{1.11g k_{z} co_{z}} \text{is actually produced}$
	Example 3: What mass of CuO is required to make 10.0 g of Cu according to the
	reaction: 2 NH ₃ + 3 CuO> N ₂ + 3 Cu + 3 H ₂ O IF the reaction has a 58.0 % yield? Step 1: Write out the balanced equation
	2 NH3 +3C40 -> N2 + 3 Cm + 3H20
	Step 2: Write out the PERCENT YIELD FORMULA and identify what you are looking for
	$58.0\% = \frac{10.09 \text{ Cu}}{\chi} \rightarrow \frac{10.09 \text{ Cu}}{0.580} = \chi \Rightarrow 17.2 \text{ g Cu}$
	Step 3: Re-arrange the FORMULA to solve for EXPECTED Cu
	$0.580 \cdot x = (10.0 g \text{GeV}) \times \rightarrow 0.580 \times = 10.0 g \text{GeV} \Rightarrow 17.2 g \text{GeV}$
	Step 4:Use the Expected Cu to solve for the required amount of CuO (STOICH)
ti.	17.2 g Cu x 1 mol Cu x 3 mol Cu D x 79.5 g Cu 0 = 21.6 g Cu 0