Name:		Key
Blk:	_Date:_	U

Chemistry 11 Organic Chemistry Lesson #1 AN INTRODUCTION TO ORGANIC CHEMISTRY

Organic chemistry is the study of hydrocarbon molecules and are therefore made up of both <u>carbon</u> and <u>hydrogen</u> atoms.					
Carbon is an unique element because it has a combining capacity of As a result carbon is capable of forming,,					
ALKANES are hydrocarbons that		ne with only			
Single bonds. ex					
Expanded Structure	Condensed structure	Skeletal Structure			
H + + + + + + + + + + + + + + + + + + +	CH3-CH3-CH3-CH3	C-C-C-C			
ALKENES are hydrocarbons that	contains a carbon backbor	ne with at least one			
double bond ex		and the Lotter bear			
Expanded Structure	Condensed Structure	Skeletal Structure			
# C-C=C-C-H	CH3-CH=CH-CH	C-C=C-C			
ALKYNES are hydrocarbons that contains a carbon backbone with at least one bond ex 2 - butyne					
	Condensed structure	Skeletal Structure			
-c-c=c-c-	CH3-C=C-CH3	C-C=C-C			
When learning about organic chemistry we begin with the ALKANE because they comprise the basic structure of all organic molecules.					
Naming is an important concept inOZGANIC CHEM as it differs greatly from what we have learned so far in chemistry from Science 8 until now, INORGANIC CHEMISTY					

Fill in the following table with the appropriate **expanded structures**

		with the appropriate expanded structures
NAME	# of C	FORMULA
METHANE	1	H - C - H
ETHANE	2	H-C-C-H H-H
PROPANE	3	H-C-C-H H H H
BUTANE	4	H-C-C-C-C+
PENTANE	5	H-C-C-C-C-
HEXANE	6	
HEPTANE	П	
OCTANE	8	-C-C-C-C-C-C-C-
NONANE	9	
DECANE	10	

Fill in the following table with the appropriate **condensed structures**

NAME	# of C	FORMULA
METHANE	1	CHY
ETHANE	2	CH3-CH3
PROPANE	3	CH3 CH2-CH3
BUTANE	4	CH3-CH2-CH3-CH3
PENTANE	5	CH3-CH3-CH3-CH3-CH3
HEXANE	6	CH3-CH2-CH3-CH3-CH3-CH3
HEPTANE	7	CH3-CH3-CH3-CH3-CH3-CH3
OCTANE	8	CH2-CH2-CH2-CH2-CH3-CH3-CH3-CH3
NONANE	9	CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-
DECANE	10	CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-

Fill in the following table with the appropriate **skeletal structures**

NAME	# of C	FORMULA
METHANE	1	C
ETHANE	2	C-C
PROPANE	3	C-C-C
BUTANE	У	C-C-C-C
PENTANE	5	C-C-C-C-C
HEXANE	6	C-C-C-C-C
HEPTANE	7	C - C - C - C - C - C - C
OCTANE	8	C - C - C - C - C - C - C - C
NONANE	9	e-c-c-c-c-c-c
DECANE	10	C-C-C-C-C-C-C-C

HOMEWORK:

Read in HEATH pgs 671-674 then complete REVIEW and PRACTICE pg 674