* Close	ed system* -> one in which nothing
Can	Sealed glass tube Conservation Laws + BALANCING EQUATIONS
A - T w	CONSERVATION LAW- an experimentally observed law that states what is "conserved" (unchanged THERE ARE FOUR CONSERVATION LAWS that you must familiarize yourself with:
Sc.8→1	Law of Conservation of ENERGY- the total energy in a Closed system does not change in a
Sc. 9 -> 2	Closed System does not change
Se. 10 → 3	3. Law of Conservation of ATOMS- the number and types of Ortoms in a closed system does not change
Chem > 4	Law of Conservation of ELECTRICAL CHARGE- the total electrical Charge in a closed system does.
V a	When a Chemical Equation is BALANCED, then
E R S S	Example 1. Balance the following chemical equations: RECALL THE (MI-NOH CHEMISTRY) TECHNIQUE Step 1. Balance the METALS Step 2. Balance the UNCHANGED POLYATOMIC IONS Step 3. Balance the NON-METALS Step 4. Balance Hydrogen's and Oxygen's last
	$- H_{2}S + \underline{\qquad} PbCl_{2} \rightarrow \underline{\qquad} PbS + \underline{\partial} HCl$ $1 = Pb = 1$ $2 = C1 = 2$ $1 = S = 1$
b.	
	1 = PQ3 = 1
	3 = N = 3 $15 = H = 15$
	2 = 0 = 3

c.
$$2C_{19}H_{17}NO_3 + 87O_2 \rightarrow 19'CO_2 + 17'H_2O + 2N_2$$
 $762819 = C = 19'38'76$
 $186 - 12 = 179' GB 24 = H = 23'4'68$
d. $C_{12}(SO_4)_3 + 5KI + KIO_3 + 3H_2O \rightarrow 2C_1(OH)_3 + 3K_2SO_4 + 3I_2$
 $62 = 18 = 6$
 $3 = 50^{12} = 3$
 $62 = 18 = 6$
 $3 = 50^{12} = 3$
 $62 = 18 = 6$
 $3 = 50^{12} = 3$
 $62 = 18 = 6$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} = 3$
 $3 = 50^{12} =$

Recall the DIATOMIC elements- Ho Of Fa Bo In No Classical (3) (3) (3) (5) (5) (5) (5) (6) (6) (6) (6) (6) (6) (6) (6)

The words <u>Crystals</u>, <u>powder</u> and <u>precipitale</u> all refer to a <u>SOLID</u> substance. A <u>precipitale</u> is used to refer to a situation when a <u>solid</u> is produced when TWO <u>solid</u> are mixed.

Example 2. Translate the following word equations into chemical equations with phases and then balance the result.

a. Aqueous phosphoric acid reacts with aqueous barium hydroxide to produce water and a precipitate of barium phospate:

$$2H_3$$
 PDu (aq) + $3Ba(OH)_2$ (aq) $\xrightarrow{Ba_3}$ $EH_2O(e) + _Ba_3(PQ_1)_2$ (5)
 $2=PQ_1^3=2$
 $12=H=12$

b. Solid Sulphur reacts with hydrogen gas to produce gaseous Hydrosulphic acid:

$$-S_{B}(s) + \underline{B}H_{2}(g) \longrightarrow \underline{B}H_{2}(g)$$

$$8 = S = B$$

$$16 = H = 16$$