Name:
Blk: \qquad Date: \qquad

Chemistry 11

Calculating Mixed Mole Problems
Amedeo Avogadro (1776-1856), a famous lawyer-turned-mathematician-physicist, proposed that 1 mole of a substance is the number of atoms of ${ }^{12}$ carbon in 12.0 grams of ${ }^{12}$ carbon. Scientists have now calculated that the number of atoms in 12.0 grams of ${ }^{12}$ carbon to be $\underline{6.02 \times 10^{23}}$ atoms; this value is referred to as "Avogadro's Number".

HOW BIG IS A MOLE?

- The mole is just a number
- We all know the numerical equivalent to 1 dozen = 12 "anything"

○ So, 1 mole $=6.02 \times 10^{23}$ "anything"!

So we can use this to establish a number of unit conversions:

- 1 mole of Ag means there are 6.02×10^{23} atoms

1 mole Ag	OR	6.02×10^{23} atoms Ag
		1 mole Ag

- 1 mole of $\mathbf{A g C l}$ means there are 6.02×10^{23} moleclules $\mathbf{A g C I}$

1 mole AgCI	OR	6.02×10^{23} molecules AgCl
6.02 $\times 10^{23} \mathrm{Molecules}$ AgCl	1 mole AgCl	

RECALL FROM our previous lessons that:
○ 1 mole of Ag is known to have a mass of 107.9 grams (Periodic Table)

1 mole Ag	OR	107.9 g Ag
		1 mole Ag

- 1 mole of AgCl means there are 143.4 g AgCl (sum of values from PT)
$1 \mathrm{Ag}=1$ (107.9) $=107.9 \mathrm{~g}$
$1 \mathrm{Cl}=1(35.5)=35.5 \mathrm{~g}$
$143.4 \mathrm{~g} / \mathrm{mole}$

1 mole AgCl	OR	143.4 g AgCl
		1 mole Ag

- 1 mole of any gas at STP occupies $\underline{22.4 \mathrm{~L}}$

1 mole gas	OR	22.4 L

NEW!!!!:
If you have a molecule then it contains a specific number of atoms:
1 molecule of $\underline{\mathrm{C}}_{6} \mathrm{H}_{14}$ has:
$\underline{6}$ atoms of C, 14 atoms of H or $\underline{20}$ atoms in 1 molecule

1 molecule $\mathrm{C}_{6} \mathrm{H}_{14}$	6 atoms C	or	1 molecule $\mathrm{C}_{6} \mathrm{H}_{14}$	14 atoms H	or	1 molecule $\mathrm{C}_{6} \mathrm{H}_{14}$	20 atoms
6 atoms C	1 molecule $^{\mathrm{C}_{6} \mathrm{H}_{14}}$		14 atoms H	1 molecule $\mathrm{C}_{6} \mathrm{H}_{14}$		20 atoms	1 molecule $\mathrm{C}_{6} \mathrm{H}_{14}$

Mole Diagram:

Mixed mole calculations:

Here are sample calculations that you will be asked, calculate the:
A. mass of a substance when given either the volume (at STP), number of atoms (if an element) or number of molecules (if a compound)
B. volume of a gas at STP when given either the mass, number or atoms (if an element) or number of molecules (if a compound)
C. number of atoms (if an element) or number of molecules (if a compound) when given either the mass, or volume of a compound at STP.

Example A: How many grams are in 50.0 L of Oxygen gas at STP?
1st. identify that you have the volume of a gas at STP and must use $\mathbf{2 2 . 4 \mathrm { L } / \mathrm { mole }}$ $2^{\text {nd. }}$: you are asked to determine mass:calculate the molar mass of oxygen $\left(\mathrm{O}_{2}\right)$

$$
2 \mathrm{O}=2(16.0)=32.0 \mathrm{~g} / \mathrm{mol}
$$

Then set up your expression to allow for unit conversions:

$50.0 \mathrm{~L} \mathrm{O}_{2}(\mathrm{~g})$	$1 \mathrm{~mole}^{2}$	32.0 g	$=71.4 \mathrm{~g} \mathrm{O}_{2}(\mathrm{~g})$
	$22.4 \mathrm{~L} \mathrm{O}_{2}(\mathrm{~g})$	$1 \mathrm{~mole} \mathrm{O}_{2}$	

Example B: How much volume does 9.03×10^{24} molecules of Carbon dioxide gas at STP?
$1^{\text {st. }}$ identify that you are given molecules so 6.02×10^{23} molecules in 1 mole $2^{\text {nd }}$: identify that you are asked to determine volume at STP so use: $\mathbf{2 2 . 4 \mathrm { L } / \mathrm { mole }}$

Then set up your expression to allow for unit conversions:

$9.03 \times 10^{24} \mathrm{~m} . \mathrm{c} \mathrm{CO}_{2}$	$1 \mathrm{~mol} \mathrm{CO}_{2}$	$22.4 \mathrm{~L} \mathrm{CO}_{2}$	$=336 \mathrm{~L} \mathrm{CO}_{2}(\mathrm{~g})$
	$6.02 \times 10^{23} \mathrm{~m} . \mathrm{c} . \mathrm{CO}_{2}$	$1 \mathrm{~mol} \mathrm{CO}_{2}(\mathrm{~g})$	

Example C: How many Carbon atoms are there in 435.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?
$1^{\text {st. }}$ identify that you have a mass and must calculate the molar mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ $6 \mathrm{C}=6$ (12.0) $=72.0 \mathrm{~g}$
$12 \mathrm{H}=12(1.0)=12.0 \mathrm{~g}$
$6 \mathrm{O}=6(16.0)=96.0 \mathrm{~g}$ $180.0 \mathrm{~g} / \mathrm{mol}$
$2^{\text {nd }}$: identify that you have a molecule that contains atoms so need two conversions:

$1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	and	1 molecule $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$6.02 \times 10^{23} \mathrm{~m} . \mathrm{c} . \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$		6 atoms C

Then set up your expression to allow for unit conversions:

435.0 g $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	$6.02 \times 10^{23} \mathrm{~m} . \mathrm{c}$. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	6 atoms C	$=8.73 \times 10^{24}$
	180.0 g	$1 \mathrm{~mole} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	$1 \mathrm{~m} . \mathrm{c} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	

Seatwork/ Homework Ex: 22-24 pgs 86 \& 87

