Name:_____ Blk:____Date:_____

Chemistry 11 Calculating Mixed Mole Problems

Amedeo Avogadro (1776 - 1856), a famous lawyer-turned-mathematician-physicist, proposed that **1 mole of a substance** is the number of atoms of ¹²carbon in 12.0 grams of ¹²carbon. Scientists have now calculated that the number of atoms in 12.0 grams of ¹²carbon to be <u>6.02 x 10²³</u> atoms; this value is referred to as <u>"Avogadro's Number".</u>

HOW BIG IS A MOLE?

- The mole is just a <u>number</u>
- We all know the numerical equivalent to 1 dozen = <u>12 "anything"</u>

• So, 1 mole = 6.02×10^{23} "anything"! So we can use this to establish a number of unit conversions:

 \circ 1 mole of Ag means there are <u>6.02 x 10²³ atoms</u>

1 mole Ag	OR	6.02 x 10 ²³ atoms Ag
6.02 x 10 ²³ atoms Ag		1 mole Ag

• 1 mole of AgCI means there are <u>6.02 x 10²³ moleclules AgCI</u>

1 mole AgCl	OR	6.02 x 10 ²³ molecules AgCl
6.02 x 10 ²³ Molecules AgCl		1 mole AgCl

RECALL FROM our previous lessons that:

• 1 mole of Ag is known to have a mass of <u>107.9 grams (Periodic Table)</u>

1 mole Ag	OR	107.9 g Ag
107.9 g Ag		1 mole Ag

• 1 mole of AgCI means there are <u>143.4 g AgCI (sum of values from PT)</u>

```
1 Ag = 1 ( 107.9) = 107.9 g
1 Cl = 1 (35.5) = <u>35.5 g</u>
143.4 g/mole
```

1 mole AgCl	OR	143.4 g AgCl
143.4 g AgCl		1 mole Ag

• 1 mole of any gas at STP occupies 22.4 L

1 mole gas		22.4 L
22.4 L	OR	1 mole gas
		i molo guo

NEW!!!!:

If you have a molecule then it contains a specific number of atoms:

1 molecule of <u>C₆H₁₄ has:</u>

6 atoms of C, 14 atoms of H or 20 atoms in 1 molecule

1	6 atoms		1	14 atoms		1	20 atoms
molecule	С		molecule	H		molecule	
C6H14		or	C6H14		or	C6H14	
6 atoms	1		14 atoms	1		20 atoms	1
С	molecule		н	molecule			molecule
	C6H14			C6H14			C6H14
	001114			061114			001114

Mole Diagram:

Mixed mole calculations:

Here are sample calculations that you will be asked, calculate the:

- A. **mass** of a substance when given either the volume (at STP), number of atoms (if an element) or number of molecules (if a compound)
- B. **volume** of a gas at STP when given either the mass, number or atoms (if an element) or number of molecules (if a compound)

C. **number of atoms (if an element) or number of molecules (if a compound)** when given either the mass, or volume of a compound at STP.

Example A: How many grams are in 50.0 L of Oxygen gas at STP?

1st: identify that you have the **volume of a gas** at STP and must use 22.4 L/ mole2nd: you are asked to **determine mass**:calculate the **molar mass** of oxygen(O₂) 2 O = 2 (16.0) = **32.0 g/mol**

Then set up your expression to allow for unit conversions:

Then set up your expression to allow for unit conversions.					
50.0 L O ₂ (g)	1 mole	32.0 g	= 71.4 g O ₂ (g)		
	22.4 L O ₂ (g)	1 mole O ₂			

Example B: How <u>much volume</u> does 9.03×10^{24} molecules of Carbon dioxide gas at STP?

1st: identify that you are **given molecules** so <u>6.02 x 10²³ molecules in 1 mole</u> 2^{nd} : identify that you are asked to **determine volume** at STP so use: <u>22.4 L/ mole</u>

Then set up your expression to allow for unit conversions:

9.03 x 10 ²⁴ m.c CO ₂	1 mol CO ₂	22.4 L CO ₂	= 336 L CO ₂ (g)		
	6.02 x 10 ²³ m.c. CO ₂	1 mol CO ₂ (g)			

Example C: How many <u>Carbon atoms</u> are there in 435.0 g of $C_6H_{12}O_6$?

1st: identify that you have a **mass** and must calculate the molar mass of C₆H₁₂O₆ 6 C = 6 (12.0) = 72.0 g 12 H = 12 (1.0) = 12.0 g

6 O = 6 (16.0) = 96.0 g

180.0 g/ mol

2nd: identify that you have a molecule that contains atoms so need two conversions:

1 mol C ₆ H ₁₂ O ₆	and	1 molecule C ₆ H ₁₂ O ₆	
6.02 x 10 ²³ m.c. C ₆ H ₁₂ O ₆		6 atoms C	

Then set up your expression to allow for unit conversions:

435.0 g	1 mole	6.02 x 10 ²³ m.c.	6 atoms C	= 8.73 x 10 ²⁴
C ₆ H ₁₂ O ₆	C ₆ H ₁₂ O ₆	C ₆ H ₁₂ O ₆		atoms C
	180.0 g	1 mole C ₆ H ₁₂ O ₆	1 m.c C ₆ H ₁₂ O ₆	

Seatwork/ Homework Ex: 22-24 pgs 86 & 87