

Name: \qquad
Blk: \qquad Date: \qquad
Chemistry 11
DOT STRUCTURES
Lewis DOT Structures of IONIC compounds are easy to construct: metal + nonHERE ARE THE RULES: metal

1. determine the charge on the ionic species
2. arrange the ions "symmetrically"

Example 1. Draw the Lewis Structure of $\mathrm{MgCl}_{2} \mathrm{C} 1 \mathrm{Mg} 2 \mathrm{Cl}$
Step 1. $\mathrm{Mg}^{-2}+2 \mathrm{Cl}^{-}$
Step 2.

$$
\left.[\mathrm{Cici}]^{2} \mathrm{CMg}\right]^{2}(\mathrm{CiO})^{2}
$$

Example 2. Draw the Lewis Structure for each of the following compounds:
a. LiBr
b. AlF_{3}
$\mathrm{Al}^{3+} 3 \mathrm{~F}^{-}$
c. BaO
$\leftarrow \mathrm{Ba}^{2+} \mathrm{O}^{2-}$
d. $\mathrm{Na}_{2} \mathrm{~S}$

Lewis DOT Structures of COVALENT compounds are somewhat more difficult to construct: HERE ARE THE RULES FOR THOSE THAT OBEY THE OCTET RULE
(1). count up the number of valence electrons brought
(2) ' Play each atom (adjust if it is a polyatomic ion)
(2) place 2 electrons between each connected atom (bond)
3. distribute "octects" to atoms starting with
(4.) "outside" atoms first
(4.) If "central" atoms have less than an octet
5. Create multiple bonds (double or triple)
tidy up your structure so that shared electrons are
Example 3. Draw the Lewis Structure for C
Step 1
Step 2.
Step 3.
Step 4.
Step 5.

$$
\begin{aligned}
& {[i F: i]^{1-}} \\
& \left.[B a]^{-1}[: 0:]^{2}\right]^{2}
\end{aligned}
$$

Example 4. Draw the Lewis Structure for HOPO:

Step 1. $1 H=\underline{1 e^{\prime}} \quad \mid P=\underline{5 e} \quad 20=\underline{12 e}$
$=18 e^{\prime}$
Step 2.
Step 3.

Step 4.

$$
H-\ddot{O}=\ddot{P}-0_{0}^{0}:
$$

Step 5.

$$
H-0_{0}^{\infty}-P=0_{0}^{00}
$$

$E x 1+2$

COVALENT compounds that VIOLATE the OCTET RULE
A. In addition to \qquad the atoms \qquad , and \qquad are exceptions as they have \qquad than a full octet when they form covalent compounds.
\rightarrow These atoms tend to \qquad -
Example 5. Draw the Lewis Structure for BF_{3} :
Step 1.

F rat B ant F $\stackrel{E}{\mathrm{~F}}$

Step 2.
Step 3.
Step 4.
Step 5.
B. Elements in the \qquad and \qquad periods of the periodic table frequently attain \qquad than a full octet when they form covalent compounds.
\rightarrow Therefore, the central atom will end up with \qquad than eight valence electrons

Example 6. Draw the Lewis Structure for PCl_{5} :
Step 1.

Step 2.
Step 3.
Step 4.

