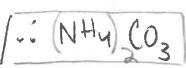
Science 9 Names and Formulas of Ionic Compounds Continued

Steps for writing formulas of ionic compounds with polyatomic <u>ions:</u>


Steps	Example 1:Iron (III) hydroxide	
1.Identify each <u>ion</u> and its appropriate <u>charge</u>	$\frac{\text{Iron (III)}}{\text{Hydroxide}} = \frac{\text{Fe}^{3+}}{\text{OH}^{1-}}$	
2.Determine the total charges needed to balance positive and negative ions (or use the criss-cross method)	Fe ³⁺ : +3 = +3 OH :-1-1-1 = -3	OH
3.Note the <u>ratio</u> of positive ions to negative ions	1 Fe ³⁺ 3 OH ¹⁻	³ 3
4.Use ratio as subscripts , be sure to protect the polyatomic ion by placing it in brackets	Fe (OH) ₃	

Example	2:	Amm	onium	carbonate
---------	----	-----	-------	-----------

4.
$$CO_3^{7-} = -2$$

3.

3.
$$4.$$
 $Fe^{3+} = +3$

Now do Practice Problems page 91 #2 a - j

Steps for writing the **name of ionic compounds with polyatomic ions**:

Steps	Example 1. Cu ₃ (PO ₄) ₂
 Identify the <u>metal</u> and list the possible <u>ion charges</u> 	Cu ¹⁺ or Cu ²⁺
2.Identify the <u>ratio</u> of the ions in the formula	3 Cu for every 2 PO ₄
3.Identify the charge on the non- metal ion	PO ₄ 3-
4.The positive and negative charges must balance ! Determine what the charge on the metal ion	$\frac{Cu^{1+}}{Cu^{2+}}: \frac{+1+1+1}{+2+2+2} = \frac{+3}{+6}$
must be to balance the non-metal	$PO_4^{3-}: -3-3 = -6$
5.Write out the compound name with the appropriate metal ion charge written as a roman numeral	Copper (II) phosphate

Example 2. M	n(CO3)3 mn2+ mn3+ mn4+
2.	2 mn for every 3 co3
4.	co@ x3 = -6
5.	3+1 x2 = -6
	Manganese (III) Carbonate
Example 3. N	K₄OH ,
1.	NHyt
2.	I NHut for every 10H
3.	I NAW TO
4.	1 1 1 - 1 - 1
	Ammonium hydroxide
5	

Now do Practice Problems page 91 #1 a-j