6. (a) mass of $\mathrm{NO}=2.00 \mathrm{~mol} \mathrm{NH}_{3} \times \frac{4 \mathrm{~mol} \mathrm{NO}}{4 \mathrm{~mol} \mathrm{NH}_{3}} \times \frac{30.0 \mathrm{~g} \mathrm{NO}}{1 \mathrm{~mol} \mathrm{NO}}=60.0 \mathrm{~g} \mathrm{NO}$
(b) mass of $\mathrm{H}_{2} \mathrm{O}=4.00 \mathrm{~mol} \mathrm{O}_{2} \times \frac{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{5 \mathrm{~mol} \mathrm{O}_{2}} \times \frac{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=86.4 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
(c) volume of $\mathrm{NH}_{3}=3.00 \mathrm{~mol} \mathrm{O}_{2} \times \frac{4 \mathrm{~mol} \mathrm{NH}_{3}}{5 \mathrm{~mol} \mathrm{O}_{2}} \times \frac{22.4 \mathrm{LNH}_{3}}{1 \mathrm{~mol} \mathrm{NH}_{3}}=53.8 \mathrm{~L} \mathrm{NH}_{3}$
(d) volume of $\mathrm{NH}_{3}=0.750 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times \frac{4 \mathrm{~mol} \mathrm{NH}_{3}}{6 \mathrm{molH}_{2} \mathrm{O}} \times \frac{22.4 \mathrm{LNH}_{3}}{1 \mathrm{~mol} \mathrm{NH}_{3}}=11.2 \mathrm{~L} \mathrm{NH}_{3}$
7. (a) mass of $\mathrm{CO}_{2}=100.0 \mathrm{gC}_{5} \mathrm{H}_{12} \times \frac{1 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{12}}{72.0 \mathrm{gC}_{5} \mathrm{H}_{12}} \times \frac{5 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{12}} \times \frac{44.0 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=306 \mathrm{~g} \mathrm{CO}_{2}$
(b) mass of $\mathrm{O}_{2}=60.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{8 \mathrm{~mol} \mathrm{O}_{2}}{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \times \frac{32.0 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}=142 \mathrm{~g} \mathrm{O}$
(c) mass of $\mathrm{C}_{5} \mathrm{H}_{12}=90.0 \mathrm{LCO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{22.4 \mathrm{LCO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{12}}{5 \mathrm{~mol} \mathrm{CO}_{2}} \times \frac{72.0 \mathrm{~g} \mathrm{C}_{5} \mathrm{H}_{12}}{1 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{12}}=\mathbf{5 7 . 9 \mathrm { g } \mathrm { C }} \mathrm{C}_{12}$
(d) volume of $\mathrm{O}_{2}=70.0 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.0 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{8 \mathrm{~mol} \mathrm{O}_{2}}{5 \mathrm{~mol} \mathrm{CO}_{2}} \times \frac{22.4 \mathrm{LO}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}=57.0 \mathrm{~L} \mathrm{O}_{2}$
(e) volume of $\mathrm{O}_{2}=48.0 \mathrm{LCO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{22.4 \mathrm{LCO}_{2}} \times \frac{8 \mathrm{~mol} \mathrm{O}_{2}}{5 \mathrm{~mol} \mathrm{CO}_{2}} \times \frac{22.4 \mathrm{LO}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}=76.8 \mathrm{~L} \mathrm{O}_{2}$
(f) mass of $\mathrm{H}_{2} \mathrm{O}=106 \mathrm{LCO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{22.4 \mathrm{LCO}_{2}} \times \frac{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{5 \mathrm{~mol} \mathrm{CO}_{2}} \times \frac{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=102 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
8. (a) volume of $\mathrm{O}_{2}=100.0 \mathrm{~g} \mathrm{PbO} \times \frac{1 \mathrm{~mol} \mathrm{PbO}}{223.2 \mathrm{~g} \mathrm{PbO}} \times \frac{27 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{PbO}} \times \frac{22.4 \mathrm{LO}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}=135 \mathrm{~L} \mathrm{O}_{2}$
(b) \# of molecules of $\mathrm{CO}_{2}=1.00 \times 10^{-6} \mathrm{~g} \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \times \frac{1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}}{323.2 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}} \times \frac{16 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}}$

$$
\times \frac{6.02 \times 10^{23}{\text { molecules } \mathrm{CO}_{2}}_{1 \mathrm{~mol} \mathrm{CO}_{2}}}{=1.49 \times 10^{16} \text { molecules } \mathrm{CO}_{2} \text { }}
$$

(c) \# of molecules of $\mathrm{H}_{2} \mathrm{O}=135$ molecules $\mathrm{O}_{2} \times \frac{20 \text { molecules } \mathrm{H}_{2} \mathrm{O}}{27 \text { molecules } \mathrm{O}_{2}}=100$ molecules $\mathrm{H}_{2} \mathrm{O}$
(d) volume of $\mathrm{O}_{2}=1.00 \times 10^{15} \mathrm{molec} \mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \times \frac{1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}}{6.02 \times 10^{23} \mathrm{molec} \mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}} \times \frac{27 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}}$

$$
\times \frac{22.4 \mathrm{LO}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}} \times \frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}=5.02 \times 10^{-4} \mathrm{~mL} \quad O_{2}
$$

9. (a) mass of $\mathrm{H}_{2} \mathrm{O}=0.150 \mathrm{~g} \mathrm{CH}_{3} \mathrm{NO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{NO}_{2}}{61.0 \mathrm{~g} \mathrm{CH}_{3} \mathrm{NO}_{2}} \times \frac{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{4 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{NO}_{2}} \times \frac{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=0.0664 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$
(b) First, note that 4 mol of $\mathrm{CH}_{3} \mathrm{NO}_{2}$ produce $4 \mathrm{~mol} \mathrm{CO}_{2}(\mathrm{~g})$ and $2 \mathrm{~mol} \mathrm{~N}_{2}(\mathrm{~g})$; that is, 6 mol of gas. volume of gas $=0.316 \mathrm{~g} \mathrm{CH}_{3} \mathrm{NO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{NO}_{2}}{61.0 \mathrm{~g} \mathrm{CH}_{3} \mathrm{NO}_{2}} \times \frac{6 \mathrm{~mol} \mathrm{gas}}{4 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{NO}_{2}} \times \frac{22.4 \mathrm{~L} \text { gas }}{1 \mathrm{~mol} \mathrm{gas}}=0.174 \mathrm{~L}$ gas
(c) volume of $\mathrm{O}_{2}=0.250 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.0 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{3 \mathrm{~mol} \mathrm{O}_{2}}{4 \mathrm{~mol} \mathrm{CO}_{2}} \times \frac{22.4 \mathrm{LO}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}=0.0955 \mathrm{~L} \mathrm{O}_{2}$
(d) mass of $\mathrm{H}_{2} \mathrm{O}=0.410 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.0 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{4 \mathrm{~mol} \mathrm{CO}_{2}} \times \frac{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=0.252 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$
10. ${\mathrm{mass} \mathrm{of} \mathrm{SiCl}_{4}=1.00 \mathrm{~g} \mathrm{Si} \times \frac{1 \mathrm{~mol} \mathrm{Si}_{2}}{28.1 \mathrm{~g} \mathrm{Si}} \times \frac{1 \mathrm{~mol} \mathrm{SiCl}_{4}}{1 \mathrm{~mol} \mathrm{Si}^{2}} \times \frac{170.1 \mathrm{~g} \mathrm{SiCl}_{4}}{1 \mathrm{~mol} \mathrm{SiCl}_{4}}=6.05 \mathrm{~g} \mathrm{SiCl}}_{4}$ mass of $\mathrm{H}_{2}=1.00 \mathrm{~g} \mathrm{Si} \times \frac{1 \mathrm{~mol} \mathrm{Si}}{28.1 \mathrm{~g} \mathrm{Si}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{molSi}} \times \frac{2.0 \mathrm{~g} \mathrm{H}_{2}}{1 \mathrm{molH}_{2}}=0.14 \mathrm{~g} \mathrm{H}$
11. volume of $\mathrm{NH}_{3}=1.25 \times 10^{4} \mathrm{~kg} \mathrm{~N}_{2} \mathrm{H}_{4} \times \frac{10^{3} \mathrm{~g} \mathrm{~N}_{2} \mathrm{H}_{4}}{1 \mathrm{~kg} \mathrm{~N}_{2} \mathrm{H}_{4}} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4}}{32.0 \mathrm{~g} \mathrm{~N}_{2} \mathrm{H}_{4}} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4}} \times \frac{22.4 \mathrm{LNH}_{3}}{1 \mathrm{~mol} \mathrm{NH}_{3}}$

$$
=1.75 \times 10^{7} \mathrm{~L} \mathrm{NH}_{3}
$$

12. mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=25.0 \mathrm{~mL} \times 1.84 \frac{\mathrm{~g}}{\mathrm{~mL}}=46.0 \mathrm{~g} \mathrm{H} \mathrm{SO}_{4}$ mass of $\mathrm{P}_{4} \mathrm{O}_{10}=46.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{98.1 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}} \times \frac{1 \mathrm{~mol} \mathrm{P}_{4} \mathrm{O}_{10}}{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}} \times \frac{284.0 \mathrm{~g} \mathrm{P}_{4} \mathrm{O}_{10}}{1 \mathrm{~mol} \mathrm{P}_{4} \mathrm{O}_{10}}=22.2 \mathrm{~g} \mathrm{P}_{4} \mathrm{O}_{10}$ volume of $\mathrm{SO}_{3}=46.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{98.1 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}} \times \frac{6 \mathrm{~mol} \mathrm{SO}_{3}}{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}} \times \frac{22.4 \mathrm{LSO}_{3}}{1 \mathrm{~mol} \mathrm{SO}_{3}}=10.5 \mathrm{~L} \mathrm{SO}_{3}$
