Analogy: Today I want to make Chocolate chip cookies If I follow The recipe it calls for 3 cups flow and a cups of chips. Chemistry 11 To make 2 dozen STOICHIOMETRY Cookies OF EXCESS + LIMITING REACTANTS I will make 2 dozen cookies, use all chocolate chips thate 27 cups of Until now all of the stoich problems we have completed assumed that all of the flow left reactants are used up in the reaction. HOWEVER, sometimes chemical reactions are carried out: 1 Purposely: to ensure that a toxic Yeardant. I is all consumed 2. unavoidably: you only have a specific amount of the reactant. In stock
IMPORTANT TERMINOLOGY: Excess Reactant(s): The Substance(s) that you will flow have left over (unreacted) Limiting Reactant: The substance that will be all used up: it defermines the amount choc. chips of product(s) that are formed Example 1. If for the synthesis reaction between hydrogen gas and oxygen gas, 20.0 g of H ₂ (g) reacts with 100.0 g of O ₂ (g), which reactant is in excess and by how much? What mass of water is made? Step 1. Write out the balanced equation: 2 H ₂ (g) t LO ₂ (g) \times 2H ₂ O (g)
Step 2. Use both masses to solve for the mass of the same product 20.0 g Hz $\left(\frac{1 \text{ mol Hz}}{2.0 \text{ g}}\right) \left(\frac{18.0 \text{ g}}{1 \text{ mol Hz}}\right) = 180 \text{ g}$ Hz $\left(\frac{100.0 \text{ g}}{2.0 \text{ g}}\right) \left(\frac{1 \text{ mol Hz}}{2.0 \text{ g}}\right) \left(\frac{1 \text{ mol Hz}}{2.0$
Step 4. To determine the amount of EXCESS REACTANT use the mass of the limiting reactant to solve for the actual mass of excess used: 100.0 g $\frac{1}{3}$ $\frac{1}{32.0}$ $\frac{1}{3}$

Example 2. If 56.8 grams of FeCl ₂ , 14.0 g of KNO ₃ and 40.0 g of HCl are
mixed and allowed to react according to the equation:
3 FeCl ₂ + KNO ₃ + 4 HCl> 3 FeCl ₃ + NO + 2 H ₂ O + KCl Which reactants are in excess and by how much?
Chan 1 Write and the belowerd equation:
3 FeCl ₂ + (kNO ₃ + 4 H(1 \rightarrow 3 FeCl ₃ + (NO) + 2 H o + kcl 30.0g No.
Step 2. Use all masses to solve for the mass of the same product
56.89 Fect (Inol Rech) (2 nol No) (30.09) = 4.48 g NO (126.8 g) (3 nol Fect) (1 nol NO) = 4.48 g NO
(14.0 g KNO3) (Inol KNO3) (Inol NO) (Inol NO) = [4.16 g NO]
40.0 g HCl (1 mol Hcl) (1 mol Hcl) (30.0 g) = 8.22 g NO 4 mol Hcl) (1 mol NO) = 8.22 g NO
Step 3. The substance that produces the least amount of product is the LIMITING
REACTANT
M.Og KNO3 is the limiting reactant
Step 4. To determine the amount of EXCESS REACTANTS use the mass of the limiting reactant to solve for the actual mass of the excess used
14.0 g kN03 (101.19) (3 mol RCl) (126.8 g) (52.7 g) (101.19) (1 mol kN03) (1 mol Recl) (Fear
14.0 g kND, (Ind KNO3) 4 nol HCl (36.5 g) = (20.2 g) HCl
Step 5. Subtract the above values from the amount of excesses that you have.
left over = have - used
· F-(1 -> 56.8 a Fech -52.7 a FeC12 = M. I g HCW)
HC1 > 40.0 g HCl - 20.2 g HCl = [19.8 g HCl]

Ex: 26-32 pgs 133-134