20. (a) \# of dollars $=90.0 \mathrm{~kg} \times \frac{\$ 9.80}{10 \mathrm{~kg}} \$ 88.20$
(b) \# of dollars $=6.00 \mathrm{t} \times \frac{1 \cdot 10^{3} \mathrm{~kg}}{1 \mathrm{t}} \times \frac{\$ 9.80}{10 \mathrm{~kg}}=$
$\$ 5880.00$
21. (a) \# of centimetres $=20.0$ inch $x \frac{2.54 \mathrm{~cm}}{1 \text { inch } 50.8 \mathrm{~cm}}$
(b) \# of metres $=36$ inch $\times \frac{2.54 \mathrm{~cm}}{1 \text { inch }} \times \frac{1.10^{-2} \mathrm{~m}}{1 \mathrm{~cm}}=0.914 \mathrm{~m}$
22. \# of centigrams $=90 \mu \mathrm{~g} \times \frac{1 \cdot 10^{-6} \mathrm{~g}}{1 \mu \mathrm{~g}} \times \frac{1 \mathrm{cg}}{1.10^{-2} \mathrm{~g}}=9 \times 10^{-3} \mathrm{cg}$
23. (a) \# of hours $=450 \mathrm{~km} \times \frac{1 \mathrm{~h}}{105 \mathrm{~km}}=4.3 \mathrm{~h}$
(b) \# of seconds $=2.0 \times 10^{2} \mathrm{~m} \times \frac{1 \mathrm{~km}}{10^{3} \mathrm{~m}} \times \frac{1 \mathrm{~h}}{105 \mathrm{~km}} \times \frac{60 \mathrm{~min}}{1 \mathrm{~h}} \times \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=6.9 \mathrm{~s}$
(c) \# of kilometres $=10.0 \mathrm{~min} \times \frac{1 \mathrm{~h}}{60 \mathrm{~min}} \times \frac{105 \mathrm{~km}}{1 \mathrm{~h}}=17.5 \mathrm{~km}$
(d) \# of centimetres $=1.00 \mathrm{~ms} \times \frac{1.10^{-3} \mathrm{~s}}{1 \mathrm{~ms}} \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}} \times \frac{1 \mathrm{~h}}{60 \mathrm{~min}} \times \frac{105 \mathrm{~km}}{1 \mathrm{~h}} \times \frac{1.10^{3} \mathrm{~m}}{1 \mathrm{~km}} \times \frac{1 \mathrm{~cm}}{1.10^{-2} \mathrm{~m}}=2.92 \mathrm{~cm}$
24. (a) \# of kilograms $=7.00 \mathrm{~L} \times \frac{5.50 \mathrm{~kg}}{1 \mathrm{~L}}=38.5 \mathrm{~kg}$
(b) \# of litres $=22 \mathrm{~kg} \times \frac{1 \mathrm{~L}}{5.50 \mathrm{~kg}}=4.0 \mathrm{~L}$
(c) \# of grams $=5.00 \mathrm{~mL} \times \frac{1 \cdot 10^{-3} \mathrm{~L}}{1 \mathrm{~mL}} \times \frac{5.50 \mathrm{~kg}}{1 \mathrm{~L}} \times \frac{1.10^{3} \mathrm{~g}}{1 \mathrm{~kg}}=27.5 \mathrm{~g}$
25. (a) \# of grams $=10.0 \mathrm{~kJ} \times \frac{1.00 \mathrm{~g}}{0.334 \mathrm{~kJ}} 29.9 \mathrm{~g}$
(b) \# of kilojoules $=50.0 \mathrm{~g} \times \frac{0.334 \mathrm{~kJ}}{1.00 \mathrm{~g}}=16.7 \mathrm{~kJ}$
(c) \# of joules $=2.00 \mathrm{~kg} \times \frac{\mathrm{l} \cdot \frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}} \times \frac{0.334 \mathrm{~kJ}}{1.00 \mathrm{~g}} \times \frac{1000 \mathrm{~J}}{\mathrm{~kJ}}=6.68 \times 10^{5} \mathrm{~J}}{}$
26. \# of micrograms $=80 \mathrm{Mg} \times \frac{1 \cdot \frac{10^{6} \mathrm{~g}}{1 \mathrm{Mg}} \times \frac{1 \mu \mathrm{~g}}{1 \cdot 10^{-6} \mathrm{~g}}=8 \times 10^{13} \mu \mathrm{~g}}{}$

27. \# of $\frac{\text { microlitres }}{\text { second }}=\frac{50.0 \mathrm{~mL}}{\mathrm{~min}} \times \frac{1 \cdot 10^{-3} \mathrm{~L}}{1 \mathrm{~mL}} \times \frac{1 \mu \mathrm{~L}}{1 \cdot 10^{-6} \mathrm{~L}} \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=833 \frac{\mu \mathrm{~L}}{\mathrm{~s}}$
