Name:	Key	
Blk:	Date:()	

Chemistry 12 EQUILIBRIUM Lesson #6 THE EQUILIBRIUM EXPRESSION AND Kee

Given the following EQUILIBRIUM EQUATION: aA (g)+bB (g)<> cC (g) + dD (g) where the lower case letters represent Coefficients and the upper case letters represent Chemical Species We can write out an EQUILIBIUM EXPRESSION (aka K _{eq}) the numerical value of the K _{eq} is called the EQUILIBRIUM CONSTANT The equlibrium expression is conventionally written as: [PRODUCTS]/[REACTANTS] Therefore the above generic equation is written as:
of the K _{eq} is called the <u>EQUILIBRIUM CONSTANT</u> The equlibrium expression is conventionally written as: [PRODUCTS]/[REACTANTS] Therefore the above generic equation is written as:
[PRODUCTS]/[REACTANTS] Therefore the above generic equation is written as:
$K_{eq} = \frac{[C]^{C}[D]^{d}}{[A]^{a}[B]^{b}}$
Write the following examples out as EQUILIBIUM EXPRESSIONS : a. PCl ₃ (g) + Cl ₂ (g)<> PCl ₅ (g) K _{eq} = [PCl ₃][Cl ₂]
b. $H_2(g) + F_2(g) <> 2 HF(g)$ $K_{eq} = \begin{array}{c} H_1 \\ H_2 \\ H_3 \\ H_4 \\ H_2 \\ H_3 \\ H_4 \\ H_4 \\ H_5 \\ H_6 \\ H_7 \\ H_8 \\ H$
NOTICE THAT THE ABOVE CHEMICALS ARE ALL IN THEIR GASEOUS PHASES! THIS IS IMPORTANT BECAUSE GENERALLY ONLY GASES AND AND SPECIES ARE INCLUDED IN THE EQUILIBRIUM EXPRESSION WHY? Keq only includes species whose concentrations can CHANGE: SOLIDS cannot be appreciably compressed (volume can't be decreased) therefore they cannot change their MOLAR CONCENTRATIONS (mol/L). This is
why SOLIDS are NOT included in the K_{eq} expression ex. $CaF_{eq} = \frac{Ca^{2+}CF^{-}}{C}$ $K_{eq} = \frac{Ca^{2+}CF^{-}}{C}$ $K_{eq} = \frac{Ca^{2+}CF^{-}}{C}$

LIQUIDS also cannot be appreciably compressed. HOWEVER, if there is ANOTHER LIQUID present it CAN cause both liquids to become DILUTE and, therefore, change both liquid's concentrations. This is why if the balanced equilibrium equation contains a SINGLE liquid it is NOT included in the K_{eq} expression.

$$K_{eq} = \frac{CHBr)^2}{CH_2}$$

ex.
$$CH_3COOH(I) + CI_2(g) <----> CH_3COCH_2(I) + HCI(g)$$

ex.
$$Cl_2(g) + 8 H_2O(I) <----> Cl_28H_2O(s)$$

$$K_{eq} = \frac{1}{\left[Cl_2\right]}$$

TO SUMMARIZE: Because the concentrations of solids and pure liquids cannot change, adding them as a reactant or product to a system in equilibrium will have NO EFFECT. That is, the equilibrium does NOT SHIFT. THEREFORE; when writing a K_{eq} expression, solids and SINGLE liquids are NEVER included whereas gases, aqueous and multiple liquids are.

SEAT WORK/HOMEWORK: Exercises 31-35

PLO's: F2

Solve the Kgg for PCI5 in this keg expression

PCI3st Cl2s PCI5g

Keg = [PCI3] x [PCI3] (PCI3) (PCI3) [PCI3] (PCI3) [PCI3] (PCI3) (PCI3