Name:
Name: Blk:Date:
Chemistry 12 EQUILIBRIUM Lesson #3 PREDICTING WHETHER A REACTION IS SPONTANEOUS OR NOT
A change is one that occurs without any outside assistance.
THERE ARE TWO FACTORS THAT DETERMINES WHETHER A REACTION WILL BE SPONTANEOUS OR NOT: 1. 2.
ENTHALPY (H): the total kinetic and potential energies that exist in a system which is at constant pressure.
All chemical reactions can be categorized as either an endothermic or exothermic reaction. GIVE OFF to the environment whereas ABSORB from the environment.
EXOTHERMIC and ENDOTHERMIC REACTIONS are illustrated in the Potential Energy diagrams below:
CHEMICAL REACTIONS TEND TO FAVOUR THE SIDE WITH
The tendency to favours the side of the reaction containing the term (as the heat is on the "DOWNHILL" side of the PE diagram)

ENTROPY: the amount of *randomness* in a system

phases the most <i>orderly</i> is whereas the most <i>random</i> is
The randomness of the phases in order of most random to least is:
CHEMICAL REACTIONS TEND TO FAVOUR THE SIDE WITH
If there is only a SINGLE PHASE in the entire chemical reaction, the side having the most molecules is favoured. eg.
If a chemical reaction contains a VARIETY OF PHASES the side with the <u>most molecules</u> of the <u>most random phase</u> is favoured. eg.
IF MINIMUM ENTHALPY and MAXIMUM ENTROPY both favour the
the reaction will eg. $CH_4(g) + O_2(g)$ > $CO_2(g)$ + 2 $H_2O(g)$ + 394 KJ
IF MINIMUM ENTHALPY favours the and MAXIMUM ENTROPY favours the the reaction will
eg. $C_2H_2(g) + 2CI_2(g)> C_2H_2CI_4(I) + 386KJ$
IF MINUM ENTHALPY and MAXIMUM ENTROPY both favour the the reaction will eg. 4 Au (s) + 3 O ₂ (g) + 162 KJ> 2 Au ₂ O ₃ (s)
SEAT WORK/HOMEWORK: EXERCISES 14-16 pgs 48 + 49 PLO's D7-D9