Name: Blk: Date:
Chemistry 12 EQUILIBRIUM Lesson #1
Equilibrium: A reversible reaction is said to be at EQUILIBRIUM when the RATE of the forward reaction is equal to the RATE of the reverse reaction.
In order for EQUILIBRIUM to be possible the products must not be able to escape as they are needed for the REVERSE reaction. Therefore:
A CLOSED SYSTEM: one in which nothing can enter or leave
TEACHER DEMONSTRATION:
TWO sealed glass tubes containing a mixture of a red-brown gas (NO_2) and a colourless gas (N_2O_4) are observed. The colour is an identical medium red-brown in each tube and there is no visible change in colour of the contents as time passes at room temperature.
When one tube is placed in a beaker of boiling water for a minute, the contents of the tube become much darker red-brown in colour. When the other tube is placed in a beaker of ice cold water , the colour quickly disappears and the contents of the tube remain colourless .
When the hot and cold tubes are taken out of the beakers and placed side by side, the tubes have an identical medium red-brown colour when they reach room temperature.
a . The gases are involved in this reversible reaction: N_2O_4 (g)<> $2\ NO_2$ (g) What evidence exists that the forward and reverse rates are EQUAL at room temperature? The MEDIVM RED-BROWN COLOUR (NO CHANGE) CONSISTANT (NO CHANGE)
b. Can temperature changes effect an equilibrium reaction? How do you know this? YES. Increase in temp shifts to dark brown a decrease in temp shifts to colourless.
c. What evidence shows that the forward reaction rates and the reverse rates are equal at 100 °C? If the temperature were raised above 100 °C what would you expect to happen to the colour? COLOUR STANS or dark brown colour! The
Increase in temp would cause the colour to darken further.

 $N_2O_4(9) \rightleftharpoons 2NO_2(9)$ colourless = colour

· colour ress = colour
d. The balanced equation in part (a) should also show ENERGY. Consider what happened to the colour when the tube was heated. Is the reaction endothermic or exothermic as written, explain.
The reaction is ENDOTHERMIC as the addition of energy (near) courses a shift to the products (dark brown colour)
e. Which gas is predominantly present at low temperatures? Which gas is predominantly present at high temperatures? How would you describe the chemical composition in a tube when it was at room temperature? NzOu is dominant a low temps while Nor is
dominant a high-temps. Room temp []'s are
f. If one tube were filled with pure NO_2 (g) and another tube with pure N_2O_4 (g), what might be true of the colours you would expect to see in the tubes after they sit for a minute at the same temperature? What evidence do you have that your prediction should occur?
Noz (g) brain would become lighter
N204 (5) colourless would turn light - brown.
- D reach equilibrium @ room temp &
THE FOLLOWING CONCLUSIONS CAN BE DRAWN FROM THE ABOVE
1. Temp. affects equilibrium (systems @) (Shift left or night
2. New equilibriums are attained a new temps
3. You can reach equilibrium by starting with either products or reactants.
4. When a equilibrium no MACROSCOPIC changes occur.
MACROSCOPIC -> VISIBLE or large scale changes in colour MICROSCOPIC -> small scale (not usible) in motion of

FROM NOW ON WHENEVER YOU SEE THE TERM "EQUILIBRIUM" IT IS IMPLYING A "DYNAMIC EQUILIBRIUM"

DYNAMIC EQUILIBRIUM: An equilibrium in which microscopic

SEAT WORK/HOMEWORK : Exercises 1, 3-5 pgs 37 + 39

PLO's: D1, D4, D5 and D6.

molecules