Name:		
Blk:	_Date:	

Chemistry 11 ELECTRONEGATIVITY + COVALENT BONDING

EL	ELECTRONEGATIVITY							
The	e following exercises are intended to help you get a better understanding of at trends in electronegativity occur in the periodic table:							
b. c. d. e. IN	Ample 1. Use the atoms Na and Cl for the following questions: Which atom has a larger atomic radius? Which atom has the stronger attraction to the outer electrons on a a neighbouring atom, based only on the atomic radius? Which atom has the greater nuclear charge? Which atom can attract electrons from an adjacent atom most strongly, based on both size and nuclear charge? Summarize the above by completing this statement: GENERAL, when going from LEFT to RIGHT across the periodic table the ctronegativity of the atoms will							
a. b.	Which atom has a larger atomic radius? Which atom has a stronger attraction to the outer electrons of another atom? Summarize the above by filling in the statement below:							

Example 3.

a. Ignoring the NOBLE GASES, which atom is the most ELECTRONEGATIVE?

IN GENERAL, when going DOWN a family of the periodic table, the

- b. Ignoring the NOBLE GASES, which atom is the least ELECTRONEGATIVE?
- c. Which is more electronegative: Cs or Be?
- d. Which is more electronegative: Sn or F?

electronegativity of the atoms will

H 2.2			TAB	LE O	FEL	ECT.	RON	NEG/	ATIVI	TIES	3:					
Li 1.0	Be 1.5	T.										B 2.0	C 2.5	N 3.0	O 3.5	F 3.9
Na 0.9	Mg 1.2											AI 1.5	Si 1.8	P 2.1	S 2.4	CI 3.8
K 0.9	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.7	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.7
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.5	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	2.2
Cs 0.7	Ba 0.9	La-Lu 1.1	Hf 1.3	Ta 1.5	W 1.7	Re 1.9	Os 2.2	lr 2.2	Pt 2.2	Au 2.4	Hg 1.4	TI 1.8	Pb 1.9	Bi 1.9	Po 2.0	At 2.2
Fr 0.7	Ra 0.9		Source	: L. Pa	uling, T	he Nati	ure of th	e Cher	nical Bo	ond and	the Str	ucture	of Mole	10.4		

Cornell University Press, Ithica, New York, 1960. Used by permission of the publisher.

You can use the table of electronegativities and the following formula predict BOND TYPES:

Δ EN = Greater EN value			0.0
There are three possible outcomes: Δ EN is between 0.0 and 0.5 = Δ EN is between 0.5 and 1.7 =	BOND	BOND	
B. Δ EN is between 1.7 and 3.3 =	BOND	_BOND	
N GENERAL, compounds with a Δ EN value $<$ 1.7 is	ue ≥ 1.7 is	<u>.</u>	_ while
Example 4. Use the above formula to pred compounds: 1. HCl = 2. H ₂ O = 3. Cl ₂ = 4. NH ₃ =	ict the bond type for	r the follow	ing

compounds:	the above formula to predict the bond type for the following			
a. HCl =				
b. H ₂ O = c. Cl ₂ =				
d. NH ₃ =				
COVALENT BON	DING:			
	formed when two atoms having less than full shells of to share one or more of their electrons with each other in order shells.			
OCTET RULE:				
The state of the s	ewis Dot Structures below show how fluorine atoms gain an			
octet of valence el	ectrons when forming fluorine gas:			

combines

11111

IN GENERAL, covalent bonds are formed when a _

with another _