

Name: Blk: Date:

CHEMISTRY 12 WORKSHEET FOR ELECTROCHEMISTRY UNIT REVIEW

1. Consider the following electrochemical cell:

Feis) Agt + le \rightarrow Ag(s) \mathcal{E}° =+0.8) NODE \mathbb{R}^{2+} + 2é \leftarrow R(s) \mathcal{E}° =+0.45

1.0 M AgNO₃

1,25-080 = 0.45 V The initial cell voltage in the diagram above is 1.25 V. Identify electrode X.

The initial cell voltage in the diagram above is 1.25.

Towards which electrode will the K⁺ ions migrate? Silver (cathoda)

Write the equation for the reduction half-reaction that occurs. Ag + 16 - (4 marks) c)

2. Consider the following electrolytic cell used for the electrolysis of molten AgCl.

Anode to Cathode

Clearly indicate on the diagram above, the direction of the electron flow through the wire,

Write the equation for the half-reaction taking place at the anode. $\frac{\partial C}{\partial C} + \frac{\partial C}{\partial C} + \frac{\partial$

2 Ag+ + 2CI --> C/2 + Ag(s) j 80= -0.56 V

3. Consider the following cell used for the electrolysis of 1.0 M KI solution containing a few drops of phenolphthalein indicator.	
Inert Electrode B	
anode Catuade	
$2T \rightarrow l_2 + 2e$ D.C. Power Supply $K^+, T^-, H_2O (Neutral)$	
Solution of 1.0 M KI with phenolphthalein indicator	
write the equation for the half-reaction taking place at electrode A. b) As the cell operates, gas bubbles form and the solution turns pink around electrode B. i) Identify the gas that forms. 2H ₂ O + 2e H ₂ + 2OH (10 ⁻⁷ M) ii) Explain why the solution turns pink. (3 marks)	
4. An electrolytic cell can be used to plate a copper penny with a silver coating. Sketch a diagram of the electrolytic cell. Label the cathode and show the direction of electron flow. (2 marks)	
5. The overall reaction in a fuel cell is: $2H_2 + O_2 \rightarrow 2H_2O \text{for each } 2H_2O for $	
a) Write the equation for the half-reaction at the anode. b) Is the overall reaction spontaneous? Explain. (2 marks) (2 marks) 6. In a titration a 1.00 mL sample of an antiseptic solution containing hydrogen peroxide required	
17.6 mL of a 0.0200 M solution of KMnO ₄ to reach the endpoint. The equation for the reaction is $5H_2O_{2(aq)} + 2MnO_4^- + 6H^+ \rightarrow 5O_2 + 2Mn^{2+} + 8H_2O$	
a) Identify the reducing agent $\rightarrow 12.02$	
b) Calculate the concentration of H_2O_2 in the antiseptic solution. 0.0176 $\times 0.0200$ md MnQ $\times \frac{5 \text{ mol H}_2O_2}{2 \text{ mol MnQ}} = \frac{8.8 \times 10^{-4} \text{ mol H}_2O_2}{0.00100} = \frac{8.80 \times 10^{-4} \text{ M}_2O_2}{0.00100} = \frac{8.80 \times 10^{-4} \text{ M}_2O$	
7. A series of experiments is performed to measure the E° produced by various combinations of metals in 1.00 M solutions of their salts. Anode Cathode E°(V) Be Ga 1.180 Ti Be 0.050 7. A series of experiments is performed to measure the E° produced by various combinations co	
Based on the data above, a) list the metals in order of their activity (strongest reducing agent first). Trusty Be(s), Gauss, Cd(s)	
b) predict the E ^o of a Ti /Cd cell. (3 marks)	
X or Anode Carnon	
b) predict the E° of a Ti /Cd cell. Anode Cathode Cd2+ 0.2977 0.950	

This reaction is not spontaneous 8. Consider the reaction: 2Fe³⁺ + $I_2 \rightarrow 2$ Fe²⁺ + 2I⁻ b/c both Fe³⁺ and I_2 Can only reaction spontaneous? Explain. (2 marks) Undergo REDUCTION: no redox run is passible Is the reaction spontaneous? Explain. 9. Balance the following redox reaction: (3 marks) $Ni + ClO_4^- \rightarrow Ni^{2+} + Cl^-$ (acid) 10. Balance the following half-reaction: $Sb_2O_5 \rightarrow Sb_2O_3$ (basic) and label as being an OXIDATION or a REDUCTION (3 marks) BATTERY Cuis CATHODE $(N_i \rightarrow N_i^2 + + 2e)4$ 86+8HT+Clou -> CI + 4 H20 4Ni+8H++C10y- ->4Ni2++C1-+4H,0 +8 + -1 = +7 +8 + -1 = +7 46+4H+56205 -> S6203 + 2420 4H20 => 4H+ +40H 4é + 2H2O + Sb2Os -> Sb2O3 + HOH L reduction (égained)

#5
$$2H_2 + O_2 \rightarrow 2H_2O$$
 (Basic Conditions)

anode: $H_2 \rightarrow 2H^+ + 2\acute{e}$
 $2OH^- + 2H^+ \rightleftharpoons 2H_2O$
 $(H_2 + 2OH^- \rightarrow 2H_2O + 2\acute{e})$ 2

Cathoole: $4H^+ O_2 + 4\acute{e} \rightarrow 2H_2O$
 $4H_2O \rightleftharpoons 4H^+ + 4OH$

Cathode:
$$4H^2 + 0, +4e^2 \rightarrow ZH_2O$$

$$4H_2O = 4H^2 + 4OH$$

$$0_2 + 4e^2 + 2H_2O - P 4OH^2$$

Together:
$$2H_2 + 40H \rightarrow 4H_20 + 46$$
 0
 $2H_20 + 40H$ $\rightarrow 40H$ $\rightarrow 40H$ $\rightarrow 2H_20$ $\rightarrow 2H_20$