Name:		
Blk:	Date:	

Chemistry 12 Electrochemistry Lesson #13 a FLECTROPLATING and FLECTROREFINING

ELECTROPLATING and ELECTROREFINING					
ELECTROPLATIN	G is the process in which a metal is or at a "cathode".				
Theto be The	is made out of the material receiving the contains ions of metal which are onto the CATHODE is generally made of the metal that is to be an inert material. Ex:				
Draw an illustratio	of a copper medallion being electroplated with Nickel:				
Here the At the ANODE oxi	is the CATHODE lation is occurring, the oxidation reaction is:				
At the Cathode red	uction is occurring, the reduction reaction is:				
The ELECTROPL / Ni ²⁺ :	p to supply the with electrons. TING SOLUTION contains Ni2+ and NO ₃ ⁻ so that:				
NO ₃ ⁻: The CATION	is attracted to the (s				
The ANION	is attracted to the				

ELECTROREFINING is the process of

Here is a cell that represents the electrorefining process used at Teck Cominco's lead refinery in Trail, BC.

The **ANODE** reaction:

Impure Pb (s)---->
$$Pb^{2+} + 2e$$

The reaction that prevails is for Pb(s). The reactions with LOWER E^o values dissolve in solution. Those with HIGHER E^o values do not oxidize but make up a Slime at the bottom of the electrolytic cell. Companies such as COMINCO sell the sludge for a profit (notice the presence of _____ and ____).

 OXIDIZING AGENT		REDU	CING AGENTS	E°(VOLTS)	
Au ³⁺ +3e ⁻	<===>	Au (s)	These metals	1.42	
Ag ⁺ + e ⁻	<===>	Ag (s)	do not	0.80	
$Cu^{2+} + 2e^{-}$	<===>	Cu (s)	dissolve	0.34	
Pb ²⁺ +2e	<===>	Pb (s)		-0.13	
$Fe^{2+} + 2e^{-}$	<===>	Fe(s)	These metals	-0.41	
$Zn^{2+} + 2e^{-}$	<==>	Zn(s)	dissolve	-0.76	

The **CATHODE** reaction:

$$Pb^{2+} + 2e ----> Pb(s)$$

The Pb²⁺ is present in larger amounts in the solution and has the highest E^o value of all ions in solution, therefore it is reduced

OXIDIZING AGENT			REDUCING AGENTS	E°(VOLTS)
These metals	$Au^{3+}+3e^{-}$	< == >	Au (s)	1.42
are not present	Ag ⁺ + c ⁻		Ag (s)	0.80
in the solution*	Cu ²⁺ +2e ⁻		Cu (s)	0.34
	Pb ²⁺ +2e ⁻	<==>	Pb (s)	-0.13
These metals are	$Fe^{2+} + 2e^{-}$	<==>	Fe (s)	-0.41
not deposited	$Zn^{2+} + Ze^{-}$	< = >	Zn (s)	-0.76

OVERALL REACTION:

HOMEWORK: READ PGS 243 - 246 do EXERCISES 73-74, 78-80

PLO's: W5-W7