BK:	Name:
Date:_	

Chemistry 12 Electrochemistry Lesson #3 Predicting the spontaneity of a REDOX reaction!!!

Turn to pg 336 in Hebden " Standard Reduction Potentials of Half- Cells" This table is constructed similarily to the Relative Strenghts of Acids table

HOW?

IMPORTANT TO NOTE, IN GENERAL: a. METALS are found exceptions include:
b. HALOGENS + OXYANIONS () are found
c. METALS such as have more than one common oxidation number, therefore,
example:
dis found at the TOP LEFT and LOWER RIGHT of the table
HOW TO READ THE HALF- Reactions in the table: Species in upper left "GO FORWARD", while species in bottom right "GO BACKWARD". Although each reaction can go either forward or backward.
USE Equilibrium arrows when referring to an isolated half-reaction USE the specific direction for the half-reaction involved in a redox reaction IMPTIII YOU MUST GET USED TO THE FOLLOWING IDEA:
$Zn^{2+} + 2e \longrightarrow Zn$ (reduction) $Zn^{2+} + 2e \longrightarrow Zn$ (oxidation)

******re-writing the oxidation reaction places the on the reactant side******	The compound that is LOWER ON THE RIGHT SIDE has greater tendency to be Therefore undergoes oxidation:	The compound that is HIGHER ON THE LEFT SIDE has greater tendency to be undergoes reduction:	NOW, consider the following situation: $Cu^{2+} + 2e <> Cu$ $Zn^{2+} + 2e <> Zn$
---	--	--	---

WHEN THE TWO HALF-CELLS ARE JOINED, THE HIGHER HALF-REACTION ON THE TABLE WILL UNDERGO _____ AND THE LOWER ONE WILL UNDERGO _____.

For example:

The overall reaction that SPONTANEOUSLY OCCURS is found by

PROBLEM: what if you are given two POTENTIAL reactants and asked to determine whether or not a reaction will occur?

- LOCATE each reactant on the TABLE!
 if the BOTH appear on the same side....NO REACTION OCCURS

for example:

b.If one is on the left and the other is on the right, there are two possibilities: i. If the species to be reduced (on the left hand side) is HIGHER than the species to be oxidized (on the right hand side)...A SPONTANEOUS RXN OCCURS!

for example:

ii. If the species to be reduced (on the left hand side) is LOWER than the species to be oxidized (on the right hand side) NO RXN OCCURS!

for example:

Example 1:

a. Cl₂ with Br Predict whether or not a reaction will occur when the following are mixed:

b. Sn with Mn

c. Ni2+ with Pb

For HOMEWORK do Excercises pg 199 - 200 7-18 odd letters only (ie: a, c, e) PLO'S S4 - S6

BIK:	Name:
Date	

Chemistry 12 Spontaneous REDOX reactions Worksheet

You are given three half reactions:

$$K^{2+} + 2e < ---> K(s)$$

 $L^{2+} + 2e < ---> L(s)$

It is determined experimentally that: $M^{2+} \text{ reacts with L(s) but no reaction occurs between } M^{2+} \text{ and } K(s).$ Arrange the half-reactions in decreasing strength as oxidizing agents (greatest strength first)

You are given four half reactions:

$$C^{2+}$$
 + 2e <---> C (s)
 D^{2+} + 2e <---> D (s)
 E^{2+} + 2e <---> E (s)
 F^{2+} + 2e <---> F (s)

It is determined experimentally that:

solid and F^{2+} reacts only with C(s). Arrange the half reactions in decreasing strength as oxidizing agents (greatest strength first) E²⁺ reacts with C(s), D (s) and F(s), No reaction occurs between C²⁺ and any

You are given five half reactions:

U²⁺ + 2e <---> U (s)

It is determined experimentally that: $T^{2+} \ reacts \ with \ R(s), \ Q(s), \ U^{2+} \ does \ not \ react \ with \ S(s), \ and \ R^{2+} \ reacts \ with \ Q(s). \ Arrange \ the \ half \ reactions \ in \ decreasing \ strength \ as \ oxidizing \ agents(\ greatest \ strength \ first)$