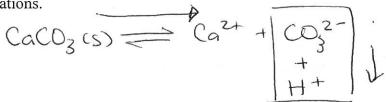


Name:	Key	
Blk:	Date!	

Chemistry 12 The Common Ion Effect and Altering Solubility

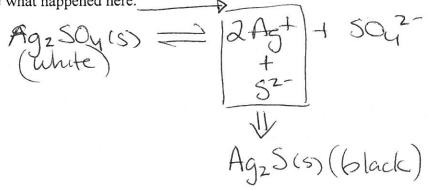
1. The following table shows some compounds with low solubility in the left column. In column 2, a solution (reagent) is added. In column 3, indicate whether the solubility of the compound on the left will be increased, decreased or not affected. In column 4 give a brief explanation for your answer. You don't need to include equilibrium equations in your explanations in this case.

Low Solubility Effect on Solubility of Compound Added Reagent Compound in


r	-	Column 1	Explanation for Effect
SrSO ₄	Ba(NO ₃) _{2(aq)}	Încrease	Sr59/15) = 5,2+ + 59/2 + Baz+
$\mathcal{J}_{\mathrm{Ag}_2\mathrm{S}}$	AgNO _{3(aq)}	decrease	Ag25 = 2Ag+4 + NB3-
SrCO ₃	HNO _{3(aq)} (nitric acid)	o Mcrease	5-co3 (5) = 5/2+ + co32+
3. AgBr	Pb(NO ₃) _{2(aq)}	increase	AgBriss = Agt + Br - pb2+
4. PbCl ₂	KCl _(aq)	decrease	PbC12 (s) = Pb4 +2Ci-4
S Be(OH) ₂	NaCl _(aq)	ho effect	Be(OH)2(5) = Be2+ + 20H
PbCO ₃	HCl _(aq)	increase	PloCo3(s) = Pb2+ + co32- ++
b CuI	CaI _{2(aq)}	decrease	CuI (5) = Cu2+ + 2I-4
Ag ₂ CO ₃	Na ₂ S _(aq)	increase	Ag2 CO3 = 12A5++ CO32-
Ca ₃ (PO ₄) ₂	K ₂ SO _{4(aq)}	6 (noveass	Ca3(PQ4)2 (5) = B Cc2+ +2PQ4-

omit *

OM! X


onirt 2.

Given that natural rainwater is slightly acidic, explain why rain will slowly dissolve limestone (CaCO_{3(s)}) over a period of time. Give a full explanation including relevant equilibrium equations.

(Unit IV)

3. Silver sulphate is a white precipitate with low solubility. When a solution of ammonium sulphide $((NH_4)_2S_{(aq)})$ is added, the white precipitate slowly dissolves and a black precipitate forms on the bottom. Using **equilibrium equations** and clear explanations, indicate what happened here.

4. Name two compounds (not just ions) that can *decrease* the solubility of BaSO_{4(s)} and explain why each one of them works

BaSou(s)
$$\Longrightarrow$$
 Ba2+ + SOy2-
a) Ba(NO₃)₂ \longrightarrow 4 (Ba2+). Shift to reactants.
b) NazSOy \longrightarrow 4 (SOy2-): shift to reactants.

5. Name a substance (not just an ion) which could *increase* the solubility of BeCO_{3(s)}. Explain why this substance works.

6. Briefly explain what is meant by the *common ion effect*.

The addition of a particular ion to prevent a past from dissolving (decreasing solubility).

10