Name:			
Blk:	Date:		

Chemistry 11 Naming Compounds Package

An Ionic compound is one that contains one metal and one (or more) non-metals.

Steps for **NAMING MONATOMIC** IONIC compounds:

Steps for MAPING PIONAL OFFICE	TONIC compounds.
Steps	Example:CaF ₂
1. Name the metal ion	Ca ²⁺ → Calcium
 Name the <u>non-metal ion</u> and change the ending to <u>"ide"</u> 	F ¹⁻ → Fluor <u>ine</u> → Fluor <u>ide</u>
3. Put it all together	Calcium fluoride
Example 1: Na ₂ S	Example 2: LiBr
1.	1.
2.	2.
3.	3.

Steps for Naming MULTIVALENT metal IONIC compouds:

Steps	Example 1. Cu ₃ P
 Identify the <u>metal</u> and 	Cu ¹⁺ or Cu ²⁺
list the possible ion charges	
Identify the <u>ratio</u> of the ions in	3 Cu for every 1 P
the formula	
Identify the <u>charge</u> on the non-	P ³⁻
metal ion	
4. The positive and negative charges	$Cu^{1+}: +1+1+1 = +3 \leftarrow$
must balance ! Determine what	Cu^{2+} : $+2+2+2 = +6$
the charge on the metal ion must	_
be to balance the non-metal	P ³⁻ : <u>-3</u> = <u>-3</u> ←
Write out the compound name	Copper (I) phosphide
with the appropriate metal ion	
charge written as a <u>roman</u>	
<u>numeral</u>	

Example 2. SnO
1.
2.
3.
4.
5

Steps for writing FORMULAS of **Ionic compounds using the**

Criss-Cross Method:

Steps	Example 1: Calcium chloride
1. Identify each <u>ion</u> (be sure to	Ca ²⁺
write down the charge)	
Always write down the metal	Cl ¹⁻
first and the non-metal second	
2. Drop the (+) and (-) signs	Ca ² Cl ¹
from the ion charge, then CRISS -	
CROSS them writing them as	
subscripts	Ca ₁ Cl ₂
3.Drop any <u>1's</u> from the formula	CaCl ₂
4.Reduce subscripts (if possible):	N/A
divide BOTH subscripts by the	-
greatest common factor	
5. Write the final formula	CaCl ₂

Example 1: Lithium Fluoride	Example 2: Iron (III) nitride
1.	1.
2.	2.
3	3
J.	J.
4.	4.

If you recall from Junior Science, some ions have more than one element in their formula and are therefore called **"POLYATOMIC"** (meaning many atoms) IONS. Here is a list of a few that you might consider comiting to memory:

Carbonate=CO ₃ ²⁻	Chromate=CrO ₄ ²⁻	Acetate=CH ₃ COO ¹⁻	Phosphate=PO ₄ 3-
hydroxide OH1-	Nitrate= NO ₃ ¹⁻	Permanganate=MnO ₄ ¹⁻	Ammonium=NH ₄ ¹⁺
Sulphate= SO ₄ ²⁻	Dichromate=Cr ₂ O ₇ ²⁻	Phosphite= PO ₃ ³⁻	Sulphite= SO ₃ ²⁻

Steps for writing formulas of **ionic compounds with POLYATOMIC**

<u>ions:</u>	
Steps	Example 1:Iron (III) hydroxide
1.Identify each ion and its	$Iron (III) = \underline{Fe^{3+}}$
appropriate <u>charge</u>	Hydroxide = <u>OH</u> 1-
2. Drop the (+) and (-) signs	Fe ³ (OH) ¹
2. Drop the <u>(+) and (-)</u> signs from the ion charge and add	re (OH)
brackets around the	
polyatomic ion, then CRISS -	
CROSS the charges and place	Fe₁ (OH)₃
writing them as subscripts	
3. Drop any <u>1's</u> from the formula	Fe(OH)₃
4.751	N/4
4. If the polyatomic has a 1 as a	N/A
subscript then eliminate the brackets	
Example 2: Ammonium carbonate	Example 3: Iron (III) nitrate
1.	1.
2.	2.
3.	3.
4.	4.

Steps for Naming **IONIC compounds with POLYATOMIC ions**:

Steps	Example 1. $Cu_3(PO_4)_2$
1.Identify the metal and	Cu ¹⁺ or Cu ²⁺
list the possible ion charges	
2.Identify the ratio of the ions in the	3 Cu for every 2 PO ₄
formula	_
3.Identify the charge on the non-	PO ₄ = 3-
metal ion	_
4. The positive and negative charges	Cu^{1+} : $+1+1+1 = +3$
must balance ! Determine what the	Cu^{2+} : $+2+2+2 = +6 \leftarrow$
charge on the metal ion must be to	
balance the non-metal	<u>PO₄ ³⁻</u> : <u>-3-3</u> = <u>-6</u> ←
5. Write out the compound name with	Copper (II) phosphate
the appropriate metal ion charge	
written as a roman numeral	

Example 2. $Mn_2(CO_3)_3$	Example 3. NH₄OH
1.	1.
2.	2.
3.	3.
4.	4.
5.	5

Naming Hydrates:

6. Silver sulphite decahydrate

Ionic compounds that include water molecules in their crystal structure are called hydrates (hydra=water). To name hydrates we use a prefix to tell how many water molecules are present.

Ex.1 CuSO₄•5H₂0 \rightarrow Copper (II) sulphate <u>penta</u>hydrate Ex. 2 Zn₃(PO₃)₂· 2H₂ O \rightarrow Zinc phospate <u>dihydrate</u>

Prefix used	# of H2O present	Prefix used	# of H ₂ O present
mono	1	hexa	6
di	2	hepta	7
tri	3	octa	8
tetra	4	nona	9
penta	5	deca	10

You must memorize the above prefixes!

Name the following: 1. NaNO ₃ ·8H ₂ 0 2. H ₂ SO ₄ ·3H ₂ 0 3. Ca(OH) ₂ ·6H ₂ 0 4. Mn(HSO ₄) ₂ ·7H ₂ 0 5. Li ₂ SO ₃ ·9H ₂ 0 6. Co(CN) ₃ ·4H ₂ 0		
Write the formula for t 1. Nickel (II) chloride h 2. Sodium phosphate p 3. Barium nitrate hepta 4. Potassium chloride m 5. Aluminum hydroxide	exahydrate entahydrate hydrate nonohydrate	

Naming Molecular Compounds

A molecular compound is one that contains two (or more) non-metals. (no metals are present)

1. Each compound name is made or two words, each with a suitable

Prefix used	# of atoms	Prefix used	# of atoms
mono	1	hexa	6
di	2	hepta	7
tri	3	octa	8
tetra	4	nona	9
penta	5	deca	10

2. The first name is simply the name of the first element, with a prefix to indicate how many or these atoms exist in each molecule:

Ex. $P_2S_3 \rightarrow$ the first name is diphosphorous

3. The second name is the name of the second element, with an "ide" ending on the elements name and a prefix to indicate how many of these atoms exist in each molecule.

Ex. $P_2S_3 \rightarrow$ the second name is trisulphide

The complete name is diphosphorous trisulphide

4. EXCEPTION: if there is only ONE of the **first** atom, do NOT use the prefix

Ex. CO → carbon monoxide, NOT monocarbon monoxide!

Name the following:	
1. CO ₃	
2. NO ₂	
3. CIF ₃	
4. S ₄ N ₂	
5. P ₂ O ₆	
6. S ₃ O ₃	

W

the formula for the following	:
Sulphur trioxide	
Phosphorous pentachloride	
Dinitrogen pentasulphide	
Trisilicon tetranitride	
Bromine hexafluoride	
Carbon dioxide	
	Sulphur trioxide Phosphorous pentachloride Dinitrogen pentasulphide Frisilicon tetranitride Bromine hexafluoride

Name:			
Pd:	Date:		

Chemistry 11 Quiz Review of Chemistry from Science 10

, , , , , , , , , , , , , , , , , , , ,
A. IONIC COMPOUNDS Name the following: a. MnCO ₃
b. NaCl
c. Ba ₃ (PO ₃) ₂
d. Co(MnO ₄) ₃
Nrite the formula for the following: a. Iron (II) phosphate
b. Barium hydroxide
c. Manganese (III) cyanide
d. Zinc phosphide
3. MOLECULAR COMPOUNDS Name the following: a. NO
b. C ₂ S ₇
c. P ₅ Br ₂
d. CCl ₄
Nrite the formula for the following: a. Carbon dioxide
b. Dinitrogen hexasulphide
c. Trioxygen monofluoride
d. Tetraphosphorus octachloride

C. HYDRATES Name the following: a. NaHCO ₃ •6H ₂ O
b. CaCl ₂ •2H ₂ O
c. Fe ₂ (Cr ₂ O ₇) ₃ •5H ₂ O
d. KMnO₄•9H ₂ O
Write the formula for the following: e. Iron (III) nitrate dihydrate
f. Tin(IV)hydroxide monohydrate
g. Calcium bromide tetrahydrate
h. Lithium sulphide trihydrate
D. ACIDS Name the following: a. HCl b. H ₂ SO ₄ c. H ₂ SO ₃ d. H ₂ S Write the formula for the following: a. Hydrobromic acid
b. Phosphorous acid
c. Permanganic acid
d. Hydrofluoric acid
BALANCE THIS: Al (s) + HCl (aq) \rightarrow AlCl ₃ (aq) + H ₂ (g)

_		
_		
_		
_		