

	158 Pacture = = Key
	CHEMISTRY 11 REVIEW
/3	1. What is the percent composition of each element in Li ₃ PO ₄ ? Show your work in the space provided. Li (69)3 = 20.7 20.7 115.7 = 17.9 6 (3 marks) 0 = (31.0) = 31.0 2. What is the percent composition of each element in Mg ₂ P ₂ O ₋ ? Show your work in the space
13	provided. $M_5 = (24.3)_2 = 48.6$ = $(31.8)_6 + (31.8)_6 + (31.8)_6 = (31.8)_6 + (31.8)_6 = (31.8)$
	or carearate the hall be to bright of the state of the st
/	3 x 3.0x = 0.015 mol Nazsoz x 126.1g = 119 g Nazsoz
/	4. How many grams of H_2SO_4 are contained in 100 mL of 6.0 M H_2SO_4 solution? 6.0 mol H_2SO_4 0.100 $L = 0.60$ mol H_2SO_4 96.19 H_2SO_4 1 mol H_2SO_4 H_2SO_4
/	5. A calcium chloride solution was prepared by dissloving 54.0 g of calcium chloride in sufficient water to make a final solution volume of 2.00 L. What is the molarity of this solution? 54.0 g CaCl ₂ × 111.1 g CaCl ₂ = 0.486 mel = 0.243 M CaCl ₂ 6. How many moles of Li ₂ CO ₃ are present in 250 mL of 0.250 M Li ₂ CO ₃ solution?
	6. How many moles of Li ₂ CO ₂ are present in 250 mL of 0.250 M Li CO solution?
)	1K x 0.250 K = 0.063 mal LizCO3
,	How many millilitres of 0.250 M NaOH solution are needed to provide 0.0200 mol of NaOH? O 0.0200 mol = 0.0800L BOOM NaOH 8. Calculate the volume of a 0.400 M BaCl ₂ stock solution required to prepare 500 mL of a 0.100 M
	Bacl ₂ solution.
	0.400 M
	9. What is the empirical formula for a compound that contains 82.40% nitrogen and 17.60% hydrogen? Show your work. I mol = 5.89 mel(3marks) = 1 17.603 + x I mel = 19.6 mel = 5.89 = 3
	After heating, a compound decomposed to produce 17.96 g of potassium, 7.35 g of sulfur and 14.70 g of oxygen. What is the empirical formula for the compound? 17.965 Px 39.13 = 0.459 mel + 0.44 marks) = 2 17.350 Sx 1 mol = 0.229 mel + 0.129 = 1
	11. Draw the electron development for an atom of potassium.
	1 K= 1522522p63523p64s1
\	12. Draw the structural formulae and name four isomers of C_5H_{12} . (3 marks) (4 H H H H H H H H H H H H H H H H H H H
+	-C-C-C-C-H; -C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C

XC
,

Page: 2

Wendy Barsalu #8456

59065

o! 8 ° 3 %

- 21. Complete and batance the following equations:
 - a) BaCl2 + H2SO4 ---> Ba504 +2HC1

22. The following data was collected when a 0.50 M solution of NaOH was titrated into 250.0 ml of an HCl solution until the phenolphthalein just turned pink.

a) Write the balanced equation for the reaction? (1) NaDH + HCI -> NaCl + H2D

23. Draw the structural formula for 2-propanol. CHECH CHZ

25. Draw the structural formula for 2,2-dimethylpentane.

26. Draw the structural formula for property.

27. Draw the structural formula for 1-chloropropyne. $C \equiv C - CH_3$

28. Draw the structural formula for propyl ethanoate

29. Draw the structural formula for 1-ethyl-2,4-dimethylbenzene.

30. Draw the structural formula for butyl methanoate.

Page: 3