| Name: | Kes . | | |-------|-------|--| | Blk: | Date: | | ## CHEMISTRY 11 Atomic Number and Atomic Mass | The | e <u>atomic</u>
ts nucleus. | <u>Nu</u> | mber | _ of | an atom is the number | er of protons | |------------|--|---|---|---------------------|---|--| | pro | | trons in the ni | ucleus of an a | tom | | | | For | a NEUTRAL | atom, the nu | mber of | CNIC | tons equals | the numbe | | The
The | e charge on a
e charge on a
e charge on a | proton is
neutron is
n electron is _ | | | | | | | Itral atom. | _ is formed wl | nen you eithe | r ad | d or remove electrons | s from/to a | | If y | ou add electr
ou remove el | ons the ion w
lectrons the ic | ill have a
on will have a | ne | pative charge. | rge | | Exe | ercises 13-17 | : | | | • | | | 13. | How many proto
(a) Be | ons are in the nu
(b) U | icleus of each of
(c) Mn | the ' | following? | | | | | trons are there ir
(b) Fe | | of ea | ch of the following? | | | 15. | How many elec
(a) Na ⁺
(b) Mg ²⁺ | trons are there of (c) V^{3+} (d) O^{2-} | on each of the fol
(e) CI ⁻
(f) AI ³⁺ | lowit
(g)
(h) | ng?
Sb ³⁻ (i) H ⁻
Fe ²⁺ (j) As ³⁻ | | | 16. | (a) two electron(b) two electron(c) an electron(d) three electron | produced when
ns are added to S
ns are removed
is added to CI?
rons are removed
is added to Cr ³⁻ | S?
from Ca?
d from Al? | (g) | two electrons are remove
an electron is removed fro
two electrons are added t
an electron is removed fro | om V ⁴⁺ ?
to Sb ⁻ ? | | 17. | What is the cha | arge on the nucle
(b) Ne | eus of each of the | e foll
(d) | owing?
S ²⁻ . | | _________ are atoms of an element that have the same number of protons but different numbers of neutrons. Therefore, they have the same atomic ________ but different atomic ________. Excercise 22: Complete the table. Show the atomic number and atomic mass in the "Symbol" column. | | Symbol | Atomic
Mass | Atomic
Number | Number of protons | Number of neutrons | Number of electrons | |-------|---------------------|----------------|------------------|-------------------|--------------------|---------------------| | (a) | | . 84 | 36 | 2 | | 36 | | (b) | | | | . 35 | 45 . | 35 | | . (c) | | 127 | 53 | | - | 54 | | (d) | | | 27 | | 32 | 27 | | (e) | Zn | E 28 | | | 36 | | | (f) | Cd ²⁺ | 112 | | | | | | (g) | | | | 38 | . 50 | 36 | | (h) | X ²⁻ = | | | | 75 | 54 | | (i) | X ³⁺ = | 103 | | | | 42 | | (j) | X ³⁻ = . | | 33 | | 42 | | ## Calculating atomic masses using a mix of isotope percentages: The atomic mass of Chlorine is said to be 35.5 grams...we know that it is impossible to have ½ a proton or neutron, so 35.5 grams must represent an **AVERAGE** value for a **MIXTURE** of isotopes. **Example:** The atomic mass of 35.5 grams is calculated based on the relative abundance of the following chlorine isotopes 35 Cl = 75.77 %, 37 Cl = 24.23 % (35 x 0.7577) + (37 x 0.2423) = 35. 453 = 35.5 g (note: atomic mass is always rounded to the first decimal place) Exercise 23: - (a) ¹⁰B = 18.8%, ¹¹B = 81.2% - (b) 69 Ga = 60.0%, 71 Ga = 40.0% - (c) 107 Ag = 51.8%, 109 Ag = 48.2% - (d) 70 Ge = 20.5%, 72 Ge = 27.4%, 73 Ge = 7.8%, 74 Ge = 36.5%, 76 Ge = 7.8% - (e) 64 Zn = 48.9%, 66 Zn = 27.8%, 67 Zn = 4.1%, 68 Zn = 18.6%, 70 Zn = 0.6% - (f) ${}^{90}Zr = 51.5\%$, ${}^{91}Zr = 11.2\%$, ${}^{92}Zr = 17.1\%$, ${}^{94}Zr = 17.4\%$, ${}^{96}Zr = 2.8\%$ - (g) ${}^{92}\text{Mo} = 15.8\%$, ${}^{94}\text{Mo} = 9.0\%$, ${}^{95}\text{Mo} = 15.7\%$, ${}^{96}\text{Mo} = 16.5\%$, ${}^{97}\text{Mo} = 9.5\%$, ${}^{98}\text{Mo} = 23.8\%$, ${}^{100}\text{Mo} = 9.6\%$ | (10) | | | | |-----------------------|----------------------|----------------------|---------------| | (13.) (a) 4 | (b) 92 | (c) 25 | | | (a) 6 | (b) 26 | (c) 18 | | | (15.) (a) 10 | (c) 20 | (e) 18 | (g) 54 | | (b) 10 | (d) 10 | (f) 10 | (h) 24 | | $(16.)(a) S^2$ | (c) CI | (e) Cr ²⁺ | (g) V^{5+} | | (b), Ca ²⁺ | (d) Al ³⁺ | (f) Mn ⁴⁺ | (h) Sb^{3-} | | 17 (a) +12 | (b) +10 | (c) +19 | (d) + 16 | | 18 Proton 1 | noutron | 1 200 | tron - 0 | | | , a | 0, | ,,,, | | 2 | 2 | 2 | | 1 | |---|---|---|---|---| | | | | / | / | | - | | | | | | | Symbol | Atomic
Mass | Atomic
Number | Number of protons | Number of neutrons | Number of electrons | |-----|----------------------------------|----------------|------------------|-------------------|--------------------|---------------------| | (a) | 8 4 Kr
3 6 | 84 | 36 | 36 | 48 | 36 | | (b) | 80
35Br | 80 | 35 | 35 | 45 | 35 | | (c) | 127
53 | 127 | .53 | 53 | 74 | 54 | | (d) | ^{5 9} _{2 7} Co | 59 | 27 | 27 | 32 | 27 | | (e) | ^{6 6} _{3 0} Zn | 66 | 30 | 30 | 36 | 30 | | (f) | ¹ | 112 | 48 | 48 | 64 | 46 | | (g) | 88
38Sr ²⁺ | 88 | 38 | 38 | 50 | 36 | | (h) | $X^{2-} = {}^{127}_{52}Te^{2-}$ | 127 | 52 | 52 | 75 | 54 | | (i) | $X^{3+} = {}^{103}_{45}Rh^{3+}$ | 103 | 45 | 45 | 58 | 42 | | (j) | $X^{3-} = {75 \over 33} As^{3-}$ | 75 | 33 | 33 | 42 | 36 | (i) 2 (j) 36 (i) O- 23) a 10.8 g 6.69.8 g C.108.0 g d. 72.7 g e. 65.4 s f. 91.3 g 9.95.9 g