\qquad Date:

Chemistry 12

ACIDS, BASES AND SALTS UNIT
Prescribed Learning Outcomes

Your weekly Wednesday "WAY BACK" Quizzes will be based on one of the following PLO's (that have been covered in the course.) It is advised that you should complete each corresponding PLO after the lesson that it is taught in, as part of your homework. At the end of each unit (and the course) the answered PLO's will serve as an excellent study quide.

PART II

N: Acids, Bases, and Salts (Hydrolysis of Salts)
It is expected that students will:
N 1 . write a dissociation equation for a salt in water N2. write net ionic equations representing the hydrolysis of salts
N3. predict qualitatively whether a salt solution would be acidic, basic, or neutral
N4. determine whether an amphiprotic ion will act as a base or an acid in solution

O: Acids, Bases, and Salts (Indicators)
It is expected that students will:
O1. describe an indicator as a mixture of a weak acid and its conjugate base, each with distinguishing colours
O2. describe the term transition point of an indicator, including the conditions that exist in the equilibrium system
O3. describe the shift in equilibrium and resulting colour changes as an acid or a base is added to an indicator
O4. predict the approximate pH at the transition poin using the Ka value or an indicator
O5. predict the approximate Ka value for an indicator given the approximate pH range of the colour change

P: Acids, Bases, and Salts (Neutralizations of Acids and Bases)

It is expected that students will:
P1. demonstrate an ability to design and perform a neutralization experiment involving the following:

* primary standards
* standardized solutions
* titration curves
* indicators selected so the end point coincides with the equivalence point

P2. calculate from titration data the concentration of an acid or base
P3. calculate the volume of an acid or base of known molarity needed to neutralize a known volume of a known molarity base or acid
P4. write formula, complete ionic, and net ionic neutralization equations for:

* a strong acid by a strong base
* a weak acid by a strong base
* a strong acid by a weak base

P5. calculate the pH of a solution formed when a strong acid is mixed with a strong base
P6. contrast the equivalence point (stoichiometric point) of a strong acid-strong base titration with the equivalence point of a titration involving a weak acidstrong base or strong acid-weak base

Q: Acids, Bases, and Salts (Buffer Solutions)
It is expected that students will:
Q1. descrihe ine tendency of buffer solutions to resist changes in pH
Q2. describe the composition of an acidic buffer and a basic buffer
Q3. outline a procedure to prepare a buffer solution
Q4. identify the limitations in buffering action
Q5. describe qualitatively how the buffer equilibrium shifts as small quantities of acid or base are added to the buffer
Q6. describe common buffer systems present in industriai, environmeintal, or biological systems

R: Acids, Bases, and Salts (Acid Rain) It is expected that students will:
R1. write equations representing the formation of acidic solutions or basic solutions from non-metal and metal oxides
R2. describe the pH conditions required for rain to be called acid rain R 3 . relate the pH of normal rain water to the presence of dissolved CO_{2}
R4. describe sources of NO_{x} and SO_{x}
R5. discuss general environmental problems associated with ácid rain

