Name:_		
Blk:	Date:	

Chemistry 12 ACID BASE LESSON #9 THE RELATIONSHIP BETWEEN K_a and K_b FOR A CONJUGATE PAIR

Experimentally it is found that the ACID IONIZATION equation:
NH_4^+ (aq) + $H_2O(I) \leftarrow \rightarrow NH_3$ (aq) + H_3O^+ (aq)
Has the acid ionization constant of:

Ka =

While the BASE IONIZATION eqaution:

 $NH_3(aq) + H_2O(I) \leftarrow \rightarrow NH_4^+(aq) + OH^-(aq)$

Has the BASE IONIZATION CONSTANT of:

 $K_b =$

Since both equations involve both ______, the following relationship exists between the K_a and K_b for CONJUGATE PAIRS

 $K_a \times K_b =$

Conclusion: for A CONJUGATE PAIR:

 K_a (conjugate acid) x K_b (conjugate base) = K_b

Recall that the table of Relative Strengths of Acids and Bases is set up with only K_a values. You can use the above equation to solve for the K_b .

Kb(conjugate base)=

Example 1. What is the K_b for H_2PO_4 ?

SEATWORK/HOMEWORK: Exercises 35-37 in Hebden

PLO's: M1-M2 and M4