| Name:_ | | | |--------|-------|--| | Blk: | Date: | | ## Chemistry 12 ACID BASE LESSON #9 THE RELATIONSHIP BETWEEN K_a and K_b FOR A CONJUGATE PAIR | Experimentally it is found that the ACID IONIZATION equation: | |--| | NH_4^+ (aq) + $H_2O(I) \leftarrow \rightarrow NH_3$ (aq) + H_3O^+ (aq) | | Has the acid ionization constant of: | Ka = While the BASE IONIZATION eqaution: $NH_3(aq) + H_2O(I) \leftarrow \rightarrow NH_4^+(aq) + OH^-(aq)$ Has the BASE IONIZATION CONSTANT of: $K_b =$ Since both equations involve both ______, the following relationship exists between the K_a and K_b for CONJUGATE PAIRS $K_a \times K_b =$ Conclusion: for A CONJUGATE PAIR: K_a (conjugate acid) x K_b (conjugate base) = K_b Recall that the table of Relative Strengths of Acids and Bases is set up with only K_a values. You can use the above equation to solve for the K_b . Kb(conjugate base)= **Example 1**. What is the K_b for H_2PO_4 ? SEATWORK/HOMEWORK: Exercises 35-37 in Hebden PLO's: M1-M2 and M4