\qquad Date: \qquad
CHEMISTRY 12 ACID BASES UNIT

Lesson \#10

the relative strengits of acids and Bảses

Example 1. If solutions containing $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{SO}_{3}{ }^{2-}$ are mixed, the foilowing acid base equilibrium exists:

Here $\mathrm{SO}_{3}{ }^{2-}$ must act as the \qquad as it \qquad !

Exampie 2: If solutions containing $\mathrm{CO}_{3}{ }^{2-}$ and $\mathrm{H}_{2} \mathrm{PO}_{4}-$ are mixed, the following acidbase equilibrium exists:

In the above two equilibrium there are acids on BOTH SIDES of the equation, just as there are bases on both sides of the equation. However, in a BRONSTED-LOWRY acid-base equilibrium the side of the equilibrium that is favoured is the side with the
\square
Therefore, in Exampie 1 the side of the equilibrium that is favoured is determined by comparing the strengths of the TWO ACIDS. Because \qquad is a weaker acid than \qquad the \qquad are favoured.

In Example 2 the side of the equilibrium that is favoured is aiso determined by comparing the strengths of the TWO ACIDS. Because \qquad is a weaker acid than , the \qquad are favoured.

Here is another way of determining which side is favoured in a Bronsted-Lowry acidbase equilbwin:

Using the chemical equation from Exampie 2:

$$
\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{PO}_{4}-<--->\mathrm{HCO}_{3}+\mathrm{HPO}_{4}{ }^{2-}
$$

Write out the Keq expression:

OR SIMPLY AS:

RECALL:

If the Keq value $=1$ \qquad
If the Keq value > 1
If the Keq value <1 \qquad

THE GENERIC Keq expression for acid-base equilbria is:

$$
\text { Keq }=\frac{\mathrm{Ka}(\text { REACTANT ACID })}{\mathrm{-a}-\mathrm{-a}(\text { PRODUCT ACID })}
$$

Example 3. When HS^{-}and HCO_{3} are mixed, does the resulting equilibrium favour the reactant or the products?

1. Choose which of these two reactants is going to act as the acid.
2. Write out the acid-base equilbrium:
3.Identify the TWO ACIDS invoived in the equilibrium:
a. Solve the problem using the WEAKER ACID rule
b. Solve the problem using the Keq equation
