	1/		
Name:_	N	4	
Blk:	Date:_		

Chemistry 12 ACID BASE PART II Lesson # 19 BUFFERS

200	
A BUFFER is a solution containing appreciable amounts of a _	weak acid and
it's conjugate weak base!!!	

Example: CH₃COOH + H₂O <-- --> CH₃COO- + H₃O+

1M

1M

If you have "appreciable" amounts then [CH₃COOH] \(\frac{1}{2} \) [CH₃COO-]

Ka = [CH3COO][H3O+] = if [CH3COOH] = [CH3COO]

CONCLUSION: Ka=[Hz0+] : pka = pH of buffer!

IMPT: a solution of CH₃COOH by itself IS NOT A BUFFER!!! You need substantial amounts of both weak acid and conjugate base to have a buffer!

The purpose of a BUFFER is to <u>maintain a Certain pH value !!!</u>

Therefore, the addition of small quantities of acid or base to a buffer results in a shift in the equilibrium to counter the added substance.

ex. $HCO_3^- + H_2O < --- > CO_3^2^- + H_3O^+$

If a base is added to the above buffer system, the _______ that is present will react with the added ______ and the buffer will shift to the ______ with little effect on the pH.

ex. HCO2 + H20 - CO32 + H30+6

If an acid is added to this buffer system, the TCIMO that is present will react with the ? In my will added _____ and the buffer will shift to the _____ REACTANS with little effect on the pH.

ex. HCO2 + H20 - CO32 + H30+ 1

NOTE: There is a LIMIT to the amount of H₃O+ or OH- that can be neutralized by a buffer. This is referred to as the Buffer Capacity. ! If it is exceeded the pH will not be maintained.

There are TWO TYPES OF BUFFERS

1. ACIDIC BUFFERS (PH Less 7)

2. BASIC BUFFERS (PH greater than 7)

ACIDIC BUFFERS- try to maintain a pH in the ACIDIC REGION An acidic buffer is made by adding appreciable amounts of a weak and it's and it's Soluble the control of the form of a SOLUBLE SALT) into solution.
ex. ddding appreciable amounts of HF and Naf. (Seet) HF + H20 = F + H30+ Ka = $\frac{CFJCH30+J}{CH20+J}$ = $\frac{255\times10^{-4}}{CH20}$ = $\frac{255\times10^{-4}}{CH20}$ = pH

This buffer would maintain a pH of 3.46

weak acred into solution.

ex. allding appreciable amounts of NHz and NHyCl (sult NHz + 1+20 \pm NHyt + OH $\frac{149}{5.6 \times 10^{-19}} = \frac{1.00 \times 10^{-14}}{5.6 \times 10^{-10}} = \frac{1.00 \times 10^{-14}}{5.6 \times 10^{-10}} = \frac{1.00 \times 10^{-14}}{14.74} = \frac{1.00 \times 10^{-14}}{14.74} = \frac{1.000 \times 10^{-14}}{14.000 - 4.74} = \frac{1.000 \times 10^{-14}}{14.000 - 4.000} = \frac{1.000 \times 10^{-14}}{14.000 - 4.000} = \frac{1.000 \times 10^{-14}}{14.000} = \frac{1.000 \times$

There is a BUFFERING REGION on both the weak acid/ STRONG BASE and weak base/STRONG ACID titration curves. These regions are illustrated below:

Weak acid STRONG Base weak Base/STRONG ACID

SEATWORK/HOMEWORK: Excercises 131-140 pgs 181-182

READ pgs 182-183 and do Exercises 141-143 pg 183

PLO's: Q1-Q6