Name:	Key	
Blk:	_Date:_	

Chemistry 12 ACID BASE LESSON #9 THE RELATIONSHIP BETWEEN K_a and K_b FOR A CONJUGATE PAIR

Experimentally it is found that the ACID IONIZATION equation: NH_4^+ (aq) + $H_2O(I) \leftarrow NH_3$ (aq) + H_3O^+ (aq)

Has the acid ionization constant of:

$$K_a = \frac{[NH_3][H_30t]}{[NH_4t]} = 5.6 \times 10^{-10}$$
on the table

While the BASE IONIZATION eqaution:

 $NH_3(aq) + H_2O(I) \leftarrow \rightarrow NH_4^+(aq) + OH^-(aq)$

Has the BASE IONIZATION CONSTANT of:

Since both equations involve both $\frac{NH_2 + NH_U + NH_U}{NH_2 + NH_U + NH_U}$, the following relationship exists between the K_a and K_b for CONJUGATE PAIRS

Conclusion: for A CONJUGATE PAIR:

 K_a (conjugate acid) x K_b (conjugate base) = K_w

Recall that the table of Relative Strengths of Acids and Bases is set up with only K_a values. You can use the above equation to solve for the K_b .

Example 2. What is the
$$K_b$$
 for HS^- ?

1. $HS^- + H_2O(L) \Rightarrow H_2S + OH^-$

2. $Kb = \frac{CH_2S)COH^-}{CH_2S} = Kb(HS) = \frac{KW}{Ka(H_2S)} = \frac{1.00 \times 10^{-14}}{9.1 \times 10^{-8}}$
 $Kb = \frac{CH_2S)COH^-}{CH_2S} = \frac{1.00 \times 10^{-14}}{1.00 \times 10^{-14}} = \frac{1.00 \times 10^{-14}}{1.00 \times 10^{-14}}$

Example 3. Given that the Kb for N_4H_6 is 2.14 x 10^{-12} , what is the Ka for $N_4H_7^+$?

[Ka (conjugate and) x kb (conjugate buse) = KN]

80 Ka =
$$\frac{KW}{\text{Kb}(\text{conjugate buse})}$$
 of Kb = $\frac{KW}{\text{Ka}(\text{conjugate acid})}$

80 Ka (NH1) = $\frac{1.00 \times 10^{14}}{3.14 \times 10^{12}}$ = $\frac{1.67 \times 10^{3}}{3}$

SEATWORK/HOMEWORK: Exercises 35-37 in Hebden

PLO's: M1-M2 and M4