Name:	K	W
Blk:	_Date:_	

Chemistry 12 ACID BASE Lesson #3+4 H₃O⁺ and BRØNSTED-LOWRY ACIDS AND BASES

The water molecule is a *POLAR MOLECULE* that has a *DIPOLE* with one end being slightly **positive** and the other end being slightly **negative**. This characteristic can be illustrated with a LEWIS DOT STRUCTURE:

Any H⁺ ion in water is so strongly attracted to the negatively charged side of the water molecule that following structure exists:

We refer to this structure as the **HYDRONIUM ION** or **HYDRATED PROTON**, NOTE: H⁺ is often referred to as the PROTON. (remember this)

THEREFORE:

Example 1. In Chemistry 11 when we wrote the ionization reaction for HCl (g), the reaction looked like this:

Now we can re-write this as:

BRØNSTED LOWRY THEORY OF ACIDS AND BASES

As we saw in lesson #1 the Arrhenius definitions of acids and bases are slightly flawed. They do not account for acids and bases that exist in EQUILIBRIUM reactions, so a different definition had to be established.

ACID	any	substance	that	DONATES	a PROTON
BASE	any	substance	that	ACCEPTS	a PROTON
	J				

Examine a typical Bronsted-Lowry acid base reaction: $\begin{array}{cccccccccccccccccccccccccccccccccccc$
NH3 is the <u>base</u> as it is <u>accepts</u> the proton to form NH4 while H2O is the <u>acid</u> as it is <u>donestes</u> the proton to form OH-
Example 2. In the following reaction which reactant is the acid and which is the base? $A B A B A$ $CH_3COOH + H_2O \leftarrow \rightarrow CH_3COO + H_3O^+$ and base
Notice that in the first example water is a <u>a a a d</u> while in the second example it is a <u>base</u> .
Any substance that can act as either an acid or a base is said to be AMPTHEROTIC
Apart from water there are TWO GUIDELINES that you can use to identify an AMPHIPROTIC substance: 1. HAS A REMOVABLE Hydrogen
2. POSSESSES A NEGATIVE Charge
Therefore the following substances are all amphiprotic: H_2PO_4 $_3$ HPO_4 $_3$ HSO_4 $_3$ HSO_4 $_3$ HCO_3
In every Bronsted-Lowry reaction there is an acid and a base on BOTH sides of the equation.
Example 3. Label the species on both sides of the reaction as either an acid or a base. HF + $SO_3^{2-} \leftarrow \rightarrow F^- + HSO_3^-$
1. Identify the reactant by seeing what it be comes
2. Identify the product
3. Each side must have both an ACID + BASE

Seatwork/HOMEWORK: Exercises 10 –14 PLO's: J6-J9