	ExA. What is the pH of 0.50M HC1? HC1+H20 > H30++C1 CHEMISTRY 12 6.50 0.50 ACID BASES UNIT Lesson #12	Name: Blk:Date:_	Koy	
	6.50 ACID BASES UNIT Lesson #12 $PH = -105(0.50) = 0.30$ Calculations Involving K_a	and pH		
	IMPT: The pH scale is NOT LINEAR!!! When the pH is i by 10!!!	ncreased by 1, t	he [H3O+] is	
	Recall that Strong Acids IONIZE 100 %, therefore the concentration of the strong acid will eqaul the concentration of H ₃ O ₊ in solution!!			
\	HOWEVER, Weak acids DO NOT IONIZE 100% in water to determine the [H3O+] that			
	Generic Equation for a WEAK ACID in water: HA + H ₂ O <> A ⁻ + H ₃ O+			
	There are THREE types of problems that you can solve associated with a weak acid:			
	Type 1 . Given the K_a and the concentration of the weak acid, solve for the pH Example 1 . What is the pH for a 0.500 M solution of CH ₃ COOH? Step 1 . Write out the ionization equation with water			
	CH3COO Hap+ H2O(1)= CH3COO	Jan + 430+	(ag)	
	Step 2. Write out the Ka expression, identify the Ka value			
1	$Ka = \frac{[CH_3COS][H_3O+]}{[CH_3COSH]} = 1.8 \times 10^{-5}$			
	Step 3. Set up an ICE TABLE for acetice acid CH3COOH(aq) + Hb0(e) CH3C C - x E 0.500-X ½ 0.500 X		Hz0+(ay)	
	C - X + 0.200 X	14	X	
	Step 4. Plug values into Ka and solve for x			
	$1.8 \times 10^{5} = \frac{[\times][\times]}{0.500} = \frac{\chi^{2}}{0.500} \rightarrow \boxed{1.8}$	30×10-3	0 =√x² = x	
	Step 5. Use x to solve for pH			
	" [11 M] - 20 x 153 DH = -log(H)	+ 1 = 12.52		

Type 2. Given the pH and the initial concentration of the weak acid, solve for the K_a value.

Example 2. If the pH of a 0.100 M solution of an unknown weak acid is 1.70, determine the K_a and identify the weak acid.

Step 1. Write out the generic ionization with water

Step 2. Set up an ICE TABLE for the weak acid

$$\frac{C - (.99 \times 10^{-2})}{E \cdot 8.0 \times 10^{-2}} + \frac{1.99 \times 10^{-2}}{1.99 \times 10^{-2}} + \frac{1.99 \times 10^{-2}}{1.99 \times 10^{-2}}$$
Step 3. Use the pH to fill in the values of the ICE TABLE

Step4. Use the equilibrium values to calculate the Ka

$$Ka = \frac{\left[1.99 \times 10^{2}\right]\left[1.99 \times 10^{2}\right]}{9.0 \times 10^{-2}} \rightarrow 5.0 \times 10^{-3} \text{ either Catric}$$
on Iron III

Type 3. Given pH and K_a, determine the initial concentration of the weak acid. **Example 3.** What concentration of H₂CO₃ is required to produce a pH of 4.18?

Step 1. Write out the ionization with water

Step 2. Write out the Ka expression, look up Ka value

$$Ka = \frac{[HcO_3][H_3O^4]}{[H_2cO_3]} = 4.3 \times 10^{-7}$$

Step 3. Set up an ICE TABLE for H₂CO₃

$$\frac{H_2(O_3(aq) + H_2O(e))}{(aq)} = \frac{H_2O_3(aq) + H_3O_3(aq)}{(aq)} + \frac{H_3O_3(aq)}{(aq)} + \frac{H_3O_3(aq)}{(aq$$

$$PH = 4.18$$
 : EH_30^4)= antilog (-4.18) = 6.6 × 10⁵

Step 5. Use K_a to solve for initial concentration $\frac{4.3 \times (6)^7}{\times} = \frac{[6.6 \times 10^{-5}]^2}{\times}$

Seatwork/Homework: Exercises 74-78, 80, 82-83

PLO's: Part of M3 and M5 for Ka

$$X = \frac{(6.6 \times 10^{5})^{2}}{4.3 \times 10^{-7}}$$

$$X = 1.0 \times 10^{-2} \text{ M}$$