CHEMISTRY 12 ACID BASES UNIT
Lesson #6 "STRONG AND WEAK" ACIDS AND BASES
NaOH (s) + H2O (l) Htaq + C1- (aq)
WEAK ACIDS or BASES are ionized less than 10% in NH3 (aq) +H2O (1) F-(aq) + H3O+(aq) F-(aq) + H3O+(aq)
IMPT: 1.EQUILIBRIUMS involve ONLY Weak acids by NOT STRONG!!!!!
2. IN PRACTICE weak acids and bases are <u>lonized</u> 450°/o
3. IN CHEMISTRY 12 it is important to get the following terms straight: STRONG + WEAK- vefex to the degree of toxication.
DILUTE + CONCENTRATED- refer to the Molarity of a Solution
NOW LETS EXAMINE THE: "Relative Strenghts of Bronsted-Lowry Acids and Bases" Table.
STRONG ACIDS: Notice the ONE-WAY ARROWS, that is because STRONG acids do NOT reach equilibrium!!!
Any STRONG ACID in water can be represented by the equation: $HA + H_2O(a) = H_3O^+(aq) + A^-(aq)$
STRONG BASES: Any STRONG BASE in water can be represented by the equation: IMPORTANT: The most common strong bases are metal hydroxides (although they do
IMPORTANT: The most common strong bases are metal hydroxides (although they do not directly get mentioned on this table) you should be familiar with the following:
NaOH, KOH, ROOH, CSOH, LIOH, Sr(OH)2
WEAK ACIDS: appear on the LEFT side of the table. OH- and NH ₃ NEVER ACT as

ACIDS in aqueous solutions!

Name:_____Blk:___Date:_____

HSO ₄ -) NEVER act as BASES in aqueous solutions!
A SPECIAL NOTE READING THE TABLE: Water is absent ex H ₂ St H+ HS- H ₂ S acting as a sacid: When a substance acts as an ACID with water, H ₃ O+ is ALWAYS PRODUCED!!! HS- acting as a base: When a substance acts as a base with water, OH- is ALWAYS PRODUCED!!!
OTHER RELATIONSHIPS FOUND IN THE TABLE: 1. The HIGHER a species is on the left side =
WATER "levels out" the strength of all STRONG ACIDS to the same strength, therefore H ₃ O+ is the STRONGEST ACID that exists in AQUEOUS SOLUTIONS!!! ex. Water also "levels out" the strength of all STRONG BASES to the same strength,
therefore OH- is the STRONGEST BASE that exists in AQUEOUS SOLUTIONS!!!! ex. BOH + BOH + BOH -
DEFINITION of THE LEVELLING EFFECT: All STRONG ACIDS are 100% IONIZED in aqueous solutions and are equivalent to solutions of Hooth, while all STRONG BASES are 100% IONIZED in aqueous solutions are are equivalent to solutions of OHTO.

WEAK BASES: appear on the RIGHT side of the table, the top six species (CIO₄- to

SEATWORK/HOMEWORK:

What sort of an electrical current would a STRONG ACID or BASE solution generate compared to a WEAK ACID or BASE solution? Explain Why Exercises 21-27 pgs 125-126

PLO's: K1-K7

RELATIVE STRENGTHS OF BRØNSTED-LOWRY ACIDS AND BASES

in aqueous solution at room temperature.

Name of Acid	Acid		Base	K _a
Perchloric	HClO ₄	→ H ⁺ +	C10 ₄ -/	very large
Hydriodic	ні -	\rightarrow H ⁺	· I \ / / I	very large
Hydrobromic	HBr -	→ H ⁺ +	Br\	very large
Hydrochloric (N)	HCl -	→ H ⁺ +	CI/	very large
Nitric	HNO ₃	→ H ⁺ +	· NO ₃	very large
Sulphuric	H ₂ SO ₄	→ H ⁺ +	HSO ₄	very large
Hydronium Ion			H ₂ O	
Iodic	HIO ₃	≓ H⁺ -	· IO ₃	1.7×10 ⁻¹
Oxalic				
Sulphurous (SO ₂ + H ₂ O)				
Hydrogen sulphate ion	HSO ₄ -	⊋ н⁺ -	- SO ₄ ²⁻	1.2×10^{-2}
Phosphoric	H ₃ PO ₄		- H ₂ PO ₄ -	7.5×10^{-3}
Hexaaquoiron ion, iron(III) ion	Fe(H ₂ O) ₆ ³⁺		$+ \operatorname{Fe}(H_2O)_5(OH)^2$	6.0×10^{-3}
Citric				
Nitrous	HNO ₂	⊋ н⁺	+ NO ₂	4.6×10^{-4}
Hydrofluoric				
Methanoic, formic	НСООН	→ H ⁺ ·	- HCOOT	1.8×10^{-4}
Hexaaquochromium ion, chromium(III) ion	$Cr(H_2O)_6^{3+}$	→ H ⁺ -	$-\operatorname{Cr}(H_2O)_5(OH)^2$	+ 1.5 × 10 ⁻⁴
Benzoic	C ₆ H ₅ COOH	→ H ⁺	C ₆ H ₅ COO	6.5×10^{-5}
Hydrogen oxalate ion	HC ₂ O ₄ -	→ H ⁺	- C ₂ O ₄ ²⁻	6.4×10^{-5}
Ethanoic, acetic				
Dihydrogen citrate ion				
Hexaaquoaluminum ion, aluminum ion	$Al(H_2O)_6^{3+}$	⇄ H ⁺	+ Al(H ₂ O) ₅ (OH) ²	1.4×10^{-5}
Carbonic (CO ₂ + H ₂ O)	H ₂ CO ₃	\rightleftarrows H ⁺	+ HCO ₃	4.3×10^{-7}
Monohydrogen citrate ion	HC ₆ H ₅ O ₇ ²⁻	\rightleftarrows H ⁺	+ C ₆ H ₅ O ₇ ³⁻ /	4.1×10^{-7}
Hydrogen sulphite ion	HSO ₃ -	\rightleftarrows H ⁺	+ SO ₃ ²⁻	1.0×10^{-7}
Hydrogen sulphide	H ₂ S		+ HS ⁻	9.1×10^{-8}
Dihydrogen phosphate ion	H ₂ PO ₄ -	→ H ⁺	+ HPO ₄ ²⁻	6.2 × 10 ⁻⁸
Boric	H ₃ BO ₃	→ H ⁺	+ H ₂ BO ₃	7.3×10^{-10}
Ammonium ion	NH ₄ +		+ NH ₃	5.6×10^{-10}
Hydrocyanic	HCN		+ CN-	4.9×10^{-10}
Phenol	C ₆ H ₅ OH		+ C ₆ H ₅ O ⁻	1.3×10^{-10}
Hydrogen carbonate ion	HCO ₂ -	⇒ H ⁺	+ CO ₃ ²⁻	5.6×10 ⁻¹¹
Hydrogen peroxide	Н,О,	→ H ⁺	+ HO ₂ -	2.4×10^{-12}
Monohydrogen phosphate ion	HPO. 2-	→ H ₁	+ PO 3-	2.2×10^{-13}
Water	н О	→ h.	+ OH-	1.0×10^{-14}
Water Hydroxide ion	NOTE -	← H	+ 102=	yary emall
Hydroxide ion	OH/	← H	[+ 0 	very sman
Ammonia	NH ₃	← H	+ NH ₂	very small

STRON G

	BASES