| CHEMISTRY 12
ACID BASES UNIT | |---| | Lesson #6 "STRONG AND WEAK" ACIDS AND BASES | | NaOH (s) + H2O (l) Htaq + C1- (aq) | | WEAK ACIDS or BASES are ionized less than 10% in NH3 (aq) +H2O (1) F-(aq) + H3O+(aq) F-(aq) + H3O+(aq) | | IMPT: 1.EQUILIBRIUMS involve ONLY Weak acids by NOT STRONG!!!!! | | 2. IN PRACTICE weak acids and bases are <u>lonized</u> 450°/o | | 3. IN CHEMISTRY 12 it is important to get the following terms straight: STRONG + WEAK- vefex to the degree of toxication. | | DILUTE + CONCENTRATED- refer to the Molarity of a Solution | | NOW LETS EXAMINE THE: "Relative Strenghts of Bronsted-Lowry Acids and Bases" Table. | | STRONG ACIDS: Notice the ONE-WAY ARROWS, that is because STRONG acids do NOT reach equilibrium!!! | | Any STRONG ACID in water can be represented by the equation: $HA + H_2O(a) = H_3O^+(aq) + A^-(aq)$ | | STRONG BASES: Any STRONG BASE in water can be represented by the equation: IMPORTANT: The most common strong bases are metal hydroxides (although they do | | IMPORTANT: The most common strong bases are metal hydroxides (although they do not directly get mentioned on this table) you should be familiar with the following: | | NaOH, KOH, ROOH, CSOH, LIOH, Sr(OH)2 | | WEAK ACIDS: appear on the LEFT side of the table. OH- and NH ₃ NEVER ACT as | ACIDS in aqueous solutions! Name:_____Blk:___Date:_____ | HSO ₄ -) NEVER act as BASES in aqueous solutions! | |---| | A SPECIAL NOTE READING THE TABLE: Water is absent ex H ₂ St H+ HS- H ₂ S acting as a sacid: When a substance acts as an ACID with water, H ₃ O+ is ALWAYS PRODUCED!!! HS- acting as a base: When a substance acts as a base with water, OH- is ALWAYS PRODUCED!!! | | OTHER RELATIONSHIPS FOUND IN THE TABLE: 1. The HIGHER a species is on the left side = | | WATER "levels out" the strength of all STRONG ACIDS to the same strength, therefore H ₃ O+ is the STRONGEST ACID that exists in AQUEOUS SOLUTIONS!!! ex. Water also "levels out" the strength of all STRONG BASES to the same strength, | | therefore OH- is the STRONGEST BASE that exists in AQUEOUS SOLUTIONS!!!! ex. BOH + BOH + BOH - | | DEFINITION of THE LEVELLING EFFECT: All STRONG ACIDS are 100% IONIZED in aqueous solutions and are equivalent to solutions of Hooth, while all STRONG BASES are 100% IONIZED in aqueous solutions are are equivalent to solutions of OHTO. | | | WEAK BASES: appear on the RIGHT side of the table, the top six species (CIO₄- to ## **SEATWORK/HOMEWORK:** What sort of an electrical current would a STRONG ACID or BASE solution generate compared to a WEAK ACID or BASE solution? Explain Why Exercises 21-27 pgs 125-126 PLO's: K1-K7 ## RELATIVE STRENGTHS OF BRØNSTED-LOWRY ACIDS AND BASES in aqueous solution at room temperature. | Name of Acid | Acid | | Base | K _a | |---|---|-----------------------------------|--|--------------------------| | Perchloric | HClO ₄ | → H ⁺ + | C10 ₄ -/ | very large | | Hydriodic | ні - | \rightarrow H ⁺ | · I \ / / I | very large | | Hydrobromic | HBr - | → H ⁺ + | Br\ | very large | | Hydrochloric (N) | HCl - | → H ⁺ + | CI/ | very large | | Nitric | HNO ₃ | → H ⁺ + | · NO ₃ | very large | | Sulphuric | H ₂ SO ₄ | → H ⁺ + | HSO ₄ | very large | | Hydronium Ion | | | H ₂ O | | | Iodic | HIO ₃ | ≓ H⁺ - | · IO ₃ | 1.7×10 ⁻¹ | | Oxalic | | | | | | Sulphurous (SO ₂ + H ₂ O) | | | | | | Hydrogen sulphate ion | HSO ₄ - | ⊋ н⁺ - | - SO ₄ ²⁻ | 1.2×10^{-2} | | Phosphoric | H ₃ PO ₄ | | - H ₂ PO ₄ - | 7.5×10^{-3} | | Hexaaquoiron ion, iron(III) ion | Fe(H ₂ O) ₆ ³⁺ | | $+ \operatorname{Fe}(H_2O)_5(OH)^2$ | 6.0×10^{-3} | | Citric | | | | | | Nitrous | HNO ₂ | ⊋ н⁺ | + NO ₂ | 4.6×10^{-4} | | Hydrofluoric | | | | | | Methanoic, formic | НСООН | → H ⁺ · | - HCOOT | 1.8×10^{-4} | | Hexaaquochromium ion, chromium(III) ion | $Cr(H_2O)_6^{3+}$ | → H ⁺ - | $-\operatorname{Cr}(H_2O)_5(OH)^2$ | + 1.5 × 10 ⁻⁴ | | Benzoic | C ₆ H ₅ COOH | → H ⁺ | C ₆ H ₅ COO | 6.5×10^{-5} | | Hydrogen oxalate ion | HC ₂ O ₄ - | → H ⁺ | - C ₂ O ₄ ²⁻ | 6.4×10^{-5} | | Ethanoic, acetic | | | | | | Dihydrogen citrate ion | | | | | | Hexaaquoaluminum ion, aluminum ion | $Al(H_2O)_6^{3+}$ | ⇄ H ⁺ | + Al(H ₂ O) ₅ (OH) ² | 1.4×10^{-5} | | Carbonic (CO ₂ + H ₂ O) | H ₂ CO ₃ | \rightleftarrows H ⁺ | + HCO ₃ | 4.3×10^{-7} | | Monohydrogen citrate ion | HC ₆ H ₅ O ₇ ²⁻ | \rightleftarrows H ⁺ | + C ₆ H ₅ O ₇ ³⁻ / | 4.1×10^{-7} | | Hydrogen sulphite ion | HSO ₃ - | \rightleftarrows H ⁺ | + SO ₃ ²⁻ | 1.0×10^{-7} | | Hydrogen sulphide | H ₂ S | | + HS ⁻ | 9.1×10^{-8} | | Dihydrogen phosphate ion | H ₂ PO ₄ - | → H ⁺ | + HPO ₄ ²⁻ | 6.2 × 10 ⁻⁸ | | Boric | H ₃ BO ₃ | → H ⁺ | + H ₂ BO ₃ | 7.3×10^{-10} | | Ammonium ion | NH ₄ + | | + NH ₃ | 5.6×10^{-10} | | Hydrocyanic | HCN | | + CN- | 4.9×10^{-10} | | Phenol | C ₆ H ₅ OH | | + C ₆ H ₅ O ⁻ | 1.3×10^{-10} | | Hydrogen carbonate ion | HCO ₂ - | ⇒ H ⁺ | + CO ₃ ²⁻ | 5.6×10 ⁻¹¹ | | Hydrogen peroxide | Н,О, | → H ⁺ | + HO ₂ - | 2.4×10^{-12} | | Monohydrogen phosphate ion | HPO. 2- | → H ₁ | + PO 3- | 2.2×10^{-13} | | Water | н О | → h. | + OH- | 1.0×10^{-14} | | Water Hydroxide ion | NOTE - | ← H | + 102= | yary emall | | Hydroxide ion | OH/ | ← H | [+ 0 | very sman | | Ammonia | NH ₃ | ← H | + NH ₂ | very small | STRON G | | BASES | |--|-------| |