Name:		Key	
the responsibility of the responsibility	_Date:_		
NID D	ACEC		

ACID BASES UNIT Lesson #6 "STRONG AND WEAK" ACIDS AND BASES

"STRONG AND WEAK" ACIDS AND BASES			
STRONG ACIDS or BASES: <u>are 100% lowized in solution</u> . NaOH (s) + H ₂ O (l) Nat (aq) + OH (aq) HCI (g) + H ₂ O (l) H ₃ Ot (aq) + CT (aq) By the completion			
WEAK ACIDS or BASES are LESS THAN 100% IONIZED in SouriON NH3 (aq) +H2O (1) NHy+ (aq) + DH- (aq) HF (aq) +H2O (1) F- (aq) + H3O+ (aq) Sequilibrium			
IMPT: 1.EQUILIBRIUMS involve ONLY Weak acids hies, NOT Stable !!!!!			
2. IN PRACTICE weak acids and bases are less than 50% lowizer.			
3. IN CHEMISTRY 12 it is important to get the following terms straight: STRONG + WEAK- veer the percentage of loweron of a. 50 botence			
DILUTE + CONCENTRATED- refer to the molarity of a solution.			
NOW LETS EXAMINE THE: "Relative Strenghts of Bronsted-Lowry Acids and Bases" Table.			
STRONG ACIDS: Notice the ONE-WAY ARROWS, that is because STRONG acids do NOT reach equilibrium!!! Any STRONG ACID in water can be represented by the equation: H+ (franciscottation of STRONG ACID) + H2O(2) = H3O+ (aq)			
STRONG BASES: Any STRONG BASE in water can be represented by the equation:			

IMPORTANT: The most common strong bases are metal hydroxides (although they do not directly get mentioned on this table) you should be familiar with the following:

NaOH, KOH, ROOH, CSOH, LIOH + Sr(OH)2

WEAK ACIDS: appear on the LEFT side of the table. OH- and NH₃ NEVER ACT as ACIDS in aqueous solutions!

OH- (from ionizational Speaks base) + H+ (any acid) = H2O

WEAK BASES: appear on the RIGHT side of the table, the top six species (CIO₄- to HSO₄-) NEVER act as BASES in aqueous solutions!

A SPECIAL NOTE READING THE TABLE: ex $H_2S \longrightarrow H^+ + HS^ H_2S$ acting as as acid: $H_2S + H_2S + H_3S^+ + (H_2S + H_3S^+ + H_3S^+ + (H_2S + H_3S^+ + H_3S^+ + H_3S^+ + (H_2S + H_3S^+ + H_3S$ When a substance acts as an ACID with water, H₃O+ is ALWAYS PRODUCED!!! HS- acting as a base: (use the reverse of the an) H25 = H++115" H5 + H+ = H25 (H5 accepts H+ from H20) When a substance acts as a base with water, OH- is ALWAYS PRODUCED!!!

OTHER RELATIONSHIPS FOUND IN THE TABLE:

- 1.The HIGHER a species is on the left side = The SRONGER the acid
- 2. The LOWER the species is on the right side= The STRONGER the lower of the lower
- 4. AMPHIPROTIC species appear on BOTH SIDES of the table!

ex. HCO3, HPQ12, HLPON, HSO5, H20, HC204, H2(6H)9 "THE LEVELLING EFFECT of WATER " H C6 H50, 2-

WATER "levels out" the strength of all STRONG ACIDS to the same strength, therefore H₃O+ is the STRONGEST ACID that exists in AQUEOUS SOLUTIONS!!!

H20+ (= + + H20 Water also "levels out" the strength of all STRONG BASES to the same strength,

therefore OH- is the STRONGEST BASE that exists in AQUEOUS SOLUTIONS!!!! ex. H20 = H+ + OH-

DEFINITION of THE LEVELLING EFFECT:

All STRONG ACIDS are 100% IONIZED in aqueous solutions and are equivalent to solutions of Hoto, while all STRONG BASES are 100% IONIZED in aqueous solutions are are equivalent to solutions of OHT!

SEATWORK/HOMEWORK:

What sort of an electrical current would a STRONG ACID or BASE solution generate compared to a WEAK ACID or BASE solution? Explain Why Exercises 21-27 pgs 125-126

PLO's: K1-K7