Name:		
Blk:	Date:	for a

Chemistry 12 ACID BASE Lesson #3+4 H₃O⁺ and BRØNSTED-LOWRY ACIDS AND BASES

The water molecule is a POLAR MOLECULE that has a DIPOLE with one end
being slightly positive and the other end being slightly negative. This
characteristic can be illustrated with a LEWIS DOT STRUCTURE:

being slightly positive and the other end being slightly negative . This characteristic can be illustrated with a LEWIS DOT STRUCTURE:
Any H ⁺ ion in water is so strongly attracted to the negatively charged side of the water molecule that following structure exists:
We refer to this structure as the HYDRONIUM ION or HYDRATED PROTON , NOTE: H ⁺ is often referred to as the (remember this)
THEREFORE:
Example 1. In Chemistry 11 when we wrote the ionization reaction for HCl (g), the reaction looked like this:
Now we can re-write this as:
BRØNSTED LOWRY THEORY OF ACIDS AND BASES As we saw in lesson #1 the Arrhenius definitions of acids and bases are slightly flawed. They do not account for acids and bases that exist in EQUILIBRIUM reactions, so a different definition had to be established.
ACID

Examine a typical Bronsted-Lowr	y acid	base	reaction:
---------------------------------	--------	------	-----------

$NH_3 + H_2O \longleftrightarrow NH_4^+ + OH^-$
NH ₃ is the as it is while
H ₂ O is the as it is
Example 2. In the following reaction which reactant is the acid and which is the base?
$CH_3COO_H + H_2O \leftarrow \rightarrow CH_3COO + H_3O^{\dagger}$
Notice that in the first example water is a while in the second example it is a
Any substance that can act as either an acid or a base is said to be
Apart from water there are TWO GUIDELINES that you can use to identify an AMPHIPROTIC substance: 1.
2.
Therefore the following substances are all amphiprotic:
In every Bronsted-Lowry reaction there is an acid and a base on BOTH sides of the equation. Example 3. Label the species on both sides of the reaction as either an acid or a base. HF + $SO_3^{2-} \leftarrow \rightarrow F^- + HSO_3^-$
1.
2.

Seatwork/HOMEWORK: Exercises 10 -14

PLO's: J6-J9

