\qquad
Blk: \qquad Date: \qquad

Chemistry
 12

ACID BASE PART II Lesson \# 15 Mixing STRONG acids and Bases

Recall the NET IONIC EQUATION for the NEUTRALIZATION reaction of a strong acid with a strong base:

When you MIX A STRONG ACID WITH A STRONG BASE there are THREE POSSIBLE OUTCOMES:
1.
2.
3.

TO SOLVE THESE PROBLEMS THE FOLLOWING EQUATIONS ARE USED:
A.IF THE SOLUTION IS BASIC ($\mathrm{pH}>7$)
B. IF THE SOLUTION IS ACIDIC ($\mathrm{pH}<7$)

Example 1. If 10.0 mL of 0.100 M HCl is mixed with 90.0 mL of 0.100 M NaOH , What is the pH of the resulting mixture?

1. HCl is a strong acid , $[\mathrm{HCl}]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad \mathrm{NaOH}$ is a strong base; $[\mathrm{NaOH}]=\left[\mathrm{OH}^{-}\right]$
2. Dilution calculations for $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}_{-}\right]$:
3. Which ion has the larger concentration? $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$?
4. Solve for the XS of \qquad .
5. Solve for the pH

Example 2. Calculate the pH that results when 50.0 mL of 0.150 M LiOH is mixed with 50.0 mL of $0.200 \mathrm{M} \mathrm{HNO}_{3}$.

1. HNO_{3} is a strong acid; $\left[\mathrm{HNO}_{3}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad \mathrm{LiOH}$ is a strong base; $[\mathrm{LiOH}]=\left[\mathrm{OH}^{-}\right]$
2. Dilution calculations for $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}_{-}\right]$:
3. Which ion has the larger concentration? $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or $\left[\mathrm{OH}_{-}\right]$?
4. Solve for the XS of \qquad .
5. Solve for the pH

Example 3. How many grams of NaOH must be added to 40.0 mL of 0.180 M HCl to produce a solution having a pH of 12.500 . Assume NO CHANGE in volume when the NaOH is added.

1. pH of 12.500 means the solution is \qquad . There is an excess of \qquad !
2. Use pH to solve for the excess concentration of \qquad .
3. Rearrange the XS equation to solve for \qquad
4.Now convert concentration into grams!
