Inde: each brand of scientific calculator is
Specific in how you must Name: enter Date:
enter
CHEMISTRY 12 ACID BASES UNIT
Lesson #11
pH and pOH
Important Formula's:
important Formula's: $pH = -\log[H_3O^4]$ $pOH = -\log[OH^-]$ $[H_3O+] = artilog(-poH)$ $[OH-] = artilog(-poH)$
NOTE: In Chem 12 all log's will be to a base of 10 !!!!
Example 1. What is the log of 0.01?
$\log (0.01) = -2.0$
Example 2. What is the log of 10-7?
log(1E(7)) = -7.0
Example 3. What is the antilog of 4.0?
antilog (4.0) = 10000 DR 1E4
Example 4. If $[H_3O+] = 3.94 \times 10^{-4} M$, what is the pH?
$PH = -\log CH_3O^{\dagger}$
= -100 A / 394 E (-) 4 /
= 3. 905 = Similar Figures in LOG VALUES & only the decimal
Dlaces of a log value that are
NOTE: Significant Figures in LOG VALUES tonly the decimal Places of a log value that are Significant
Example 5. If [OH-] = 9.5×10^{-12} M, what is the pOH?
(\mathcal{Z})
$poh = -log(0h^{-1})$ = $-log(9.5 \cdot 10^{-12})$ = 11.02
5 11.02

Example 6. If pH = 3.405, what is the $[H_3O+]$?

$$[H_3 0^+] = antilog(-PH)$$

= $antilog(-3.405) =)[tl_3 0^+] = 3.94.10$

Example 7. If pOH = 11.68, what is the [OH-]?

$$(OH^{-}) = antilog (-POH)$$

$$= antilog (-11.68) \longrightarrow \underline{a.1.10}^{-12}$$

LOG LAW: $Log(A \times B) = log(A) + Log(B)$

Recall: $Kw - > 1.00 \times 10^{-14} = [H_3O +][OH -]$

Therefore:
$$log(1.00E(-)14) = log(H_30^{\dagger}) + log(OH^{\dagger})$$

 $log(H_30^{\dagger}) + log(OH^{\dagger})$
 $log(H_30^{\dagger}) + log(OH^{\dagger})$

Example 8. If pH = (9.355), what is the pOH?

Tample 8. If pH = 9.355, what is the pOH?

$$PKW = PH + POH$$
 $14.000 = 9.355 = POH$
 $14.645 = POH$

ample 9. If pOH = 2.35, what is the pH?

$$\frac{14.000 - 9.353 = poH}{4.645 = poH}$$

Example 9. If pOH = 2.35, what is the pH?

Use the following diagram to work back and forth between [H_3O+], [OH-], pH and pOH:

Example 10. If pH = 6.330, what is the [OH-]?

Route #1:
$$PH \rightarrow POH \rightarrow CoH^{-1}$$

 $POH = 14.000 - 6.330 = 7.670$
 $COH^{-1} = antilog(-7.670) = 2.14.10 mpH^{-1}$

Route #2:
$$pH \rightarrow [H_30^{\dagger}] \rightarrow [OH^{-}]$$

 $(H_30^{\dagger}) = antlog(-6.330) = 4.68.10^{-}$ M H_30^{\dagger}
 $(DH^{-}) = \frac{1.00.10^{-14}}{4.68.10^{-}} = 2.14.10^{-8}$ M OH

The relationships between $[H_3O^+]$, $[OH^-]$, pH and pOH are shown on the following diagram.

You should note the following about the diagram.

- a) The pH scale INCREASES as the pOH scale DECREASES.
- b) A solution is ACIDIC when its pH is LESS THAN 7; a solution is BASIC when its pOH is LESS THAN 7. Conversely, a solution is BASIC when its pH is GREATER THAN 7; a solution is ACIDIC when its pOH is GREATER THAN 7. A NEUTRAL solution has pH = pOH = 7.
- c) At any point along the horizontal scale it is found, as expected, that pH + pOH = 14 and $[H_3O^+][OH^-] = 10^{-14}$.
- While it is possible for pH to have a value of -1 or 15, say, the pH scale is meant for use in the range 0 to 14. A pH of -1.00 is better handled in terms of its molar concentration: $[H_3O^+] = 10 \text{ M}$.

The pH Scale with Common Household Substances

The pH values of many common solutions fall within a range from 0 to 14, as shown on this pH scale. The table above the pH scale relates the positive pH values to their hydronium ion concentrations and their logarithms.

Seatwork/Homework: Exercises 47-57 in Hebden

PLO's: L8-L12